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En primer lugar y con mayúsculas, quiero agradecer a mis directores
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ahora te encontraŕıas felizmente casado y con un “peaso” de rorro! Qué
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Resumen

Contexto del trabajo

La evolución interna de la Fı́sica ha dado lugar a un interés creciente en la
investigación de estructuras espaciales fuera de equilibrio. Estas estructuras
pueden aparecer fuera del equilibrio termodinámico como estados estaciona-
rios independientes del tiempo o como estados dinámicos [1, 2]. Los estados
dinámicos pueden ser persistentes (incluido el caos espaciotemporal), y tran-
sitorios en los que podemos estudiar los procesos de crecimiento y evolución
de una estructura espacial [3]. Entre los sistemas en los que se han estudiado
procesos de crecimiento cabe destacar: fluidos simples y binarios, aleaciones
binarias, superfluidos y superconductores, mezclas poliméricas, geles, láseres,
condensación electrón-hueco en semiconductores, sistemas geológicos (mine-
rales), sistemas reactantes quı́micos, metales, vidrios y cerámicas cristalinas,
transiciones orden-desorden, sistemas magnéticos, crecimiento de colonias de
bacterias, crecimiento dendrı́tico, segregación de especies y crecimiento de po-
blaciones en sistemas predador-presa. Existen esencialmente dos tipos de cre-
cimiento en sistemas fı́sicos: crecimiento interfacial o de dominios [4, 5] y el
crecimiento por agregación de partı́culas similares [6]. Sólo se hablará en esta
memoria del primero, el cual se refiere a las etapas de la evolución durante
el proceso transitorio hacia un estado final de un sistema en el que coexisten
varias fases. Ejemplo prototipo de esta situación es la dinámica de separación
de fases cuando una aleación binaria se enfrı́a rápidamente por debajo de una
temperatura crı́tica [4]. El proceso dinámico está gobernado por la creación
de defectos topológicos y el movimiento de interfases. En la literatura anglo-
sajona, el proceso de crecimiento de los dominios se suele llamar coarsening,
un término de origen en el vocabulario metalúrgico que podrı́amos traducir
por embastecer. Una cantidad relevante es el tamano de dominio medio, cuya
dependencia temporal proporciona una ley de crecimiento caracterı́stica.

Los procesos de crecimiento en la aproximación hacia un estado final de
equilibrio termodinámico son generalmente bien conocidos [4]. Sólo en los
últimos anos se han empezado a estudiar dinámicas transitorias cuando el
estado final no es de equilibrio termodinámico [7, 8, 9]. Estas dinámicas son a
menudo no potenciales. El significado del término “no potencial” se explica con
detalle en el capı́tulo 1. Brevemente, indica que la dinámica no minimiza un
potencial o energı́a libre conocidos. Ello da lugar a un comportamiento y movi-
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miento cualitativamente distintos de defectos topológicos e interfases. En un
sistema potencial, la estabilidad relativa de las diversas fases permite carac-
terizar con exactitud el movimiento de las interfases que las delimitan [10].
Por contra, no hay en general un criterio claro que permita dirimir qué fase
es más estable que otra en un sistema no potencial. Es difı́cil hacer una ca-
racterización global de dinámicas no potenciales y cada caso debe estudiarse
en general separadamente. Algunos trabajos sobre movimiento de frentes en
sistemas no potenciales pueden encontrarse en [11, 12, 13, 14, 15]. El objeti-
vo central de la presente memoria es el estudio de los procesos mediante los
cuales un sistema con una dinámica no potencial, que puede albergar varias
fases estables, se aproxima a un estado final. El estudio está centrado en sis-
temas cuyas propiedades pueden expresarse en términos de parámetros de
orden escalares no conservados.

En sistemas no potenciales puede haber ocasiones en las que, a pesar de
coexistir varias fases estables en el sistema, se inhiba el proceso de crecimien-
to de dominios y no se llegue a un estado final independiente del tiempo. Por
ejemplo, la ausencia de coarsening puede ser debida a la aproximación a esta-
dos dinámicos persistentes. Un ejemplo es la convección de Rayleigh-Bénard
de un fluido sometido a rotación [16, 17, 18]. Por encima de una velocidad
de rotación crı́tica, el sistema se encuentra en una situación de caos espacio-
temporal de forma que el tamano medio de los dominios satura a un valor
estadı́sticamente constante. En este trabajo se estudian sistemas que incor-
poran dinámicas no potenciales que pueden dar lugar a estados finales de
no equilibrio no estacionarios. En otras ocasiones, el proceso de crecimiento
puede verse frenado por la aparición de estructuras congeladas (patrones la-
berı́nticos, estructuras localizadas, etc.). A menudo, estas estructuras están
asociadas a perfiles no monótonos de las interfases, los cuales pueden dar
lugar a fuerzas de interacción repulsivas entre frentes. La existencia de coar-
sening depende de la importancia relativa de esta interacción repulsiva en
relación con los efectos coadyuvantes al crecimiento. Un ejemplo, ampliamen-
te desarrollado en el capı́tulo 4, lo constituyen los dominios de polarización
formados en el plano transversal de una cavidad óptica que contiene un me-
dio kerr no lineal cuando se ilumina con luz linealmente polarizada. En el
régimen donde hay coexistencia de dos estados homogéneos de polarizacion
linealmente estables (biestabilidad óptica), y dependiendo de la intensidad de
la luz incidente, puede haber coarsening, formación de estructuras localizadas
o creación de patrones laberı́nticos.

Para sistemas que se aproximan a un estado final de equilibrio termo-
dinámico, se ha observado que el proceso de crecimiento de dominios es auto-
similar [4, 19]. Esto significa que la estructura de dominios es, en un sentido
estadı́stico, independiente del tiempo salvo un factor global de escala; se di-
ce entonces que el sistema exhibe escala dinámica. Hay otros sistemas que
no poseen en absoluto una escala de longitud caracterı́stica, pero que sin em-
bargo son autosimilares sobre muchas escalas de longitud. Tales sistemas
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se denominan fractales y han cobrado una gran importancia en los últimos
anos [20]. Ejemplos de crecimiento fractal son la solidificación dendrı́tica en
un medio sobreenfriado, digitaciones viscosas y electrodeposición iónica sobre
un electrodo. Los estudios de escala dinámica resultaron de gran ayuda pa-
ra entender la escala en sistemas fractales (escala multifractal) que es una
generalización de la escala simple.

Una pregunta que surge de forma natural es si un sistema con una
dinámica no potencial exhibe escala dinámica durante procesos de crecimien-
to de dominios. Sin embargo, apenas hay trabajos publicados en esta área
(una excepción la constituye la referencia [8]). Con el trabajo desarrollado
en esta memoria se pretende dar un primer paso para llenar el vacı́o exis-
tente en el estudio de procesos de crecimiento y escala dinámica en sistemas
no potenciales. En los sistemas estudiados en esta memoria damos evidencia
de una evolución dinámica autosimilar en un régimen de crecimiento de do-
minios, con leyes de crecimiento diferentes de las correspondientes al lı́mite
de dinámica potencial. Por otra parte, explicamos cómo la presencia de de-
fectos topológicos creados en la evolución dinámica transitoria, y efectos no
potentiales, pueden frenar el proceso de crecimiento, dando lugar en algunas
ocasiones a estados dinámicos persistentes.

Resumen de la memoria

En el capı́tulo 1 se hace un resumen de algunos de los resultados más desta-
cados que se conocen sobre dinámica de interfases, tanto en sistemas poten-
ciales como no potenciales. Antes, se hace una clasificación de los sistemas
dinámicos, con una explicación detallada y concisa del término “no potencial”,
que a menudo se utiliza a través de este trabajo. La segunda parte del capı́tulo
está dedicada al resumen de conceptos básicos sobre crecimiento de dominios
y escala dinámica. Se presentan los resultados fundamentales sobre leyes
de crecimiento para diferentes sistemas importantes. Paralelamente, se ha-
ce una comparación entre ellos en un intento de determinar los mecanismos
dominantes de los diversos procesos de crecimiento. En cuanto a la escala
dinámica, se explica cómo estudiarla y se introduce el concepto de función de
escala.

En el capı́tulo 2 se considera un modelo de tres campos acoplados (mode-
lo de Busse-Heikes [21]), que fue propuesto para estudiar la convección de
Rayleigh-Bénard de un fluido sometido a rotación. Cada campo representa
la amplitud de un conjunto de rollos de convección paralelos con una orien-
tación de 60Æ respecto de los otros dos campos. En general, la dinámica es
no potencial y hay tres fases estables que coexisten asociadas a cada una de
esas orientaciones. La velocidad angular de rotación de la celda del fluido está
vinculada a efectos no potenciales en el modelo. Por encima de una velocidad
de rotación crı́tica, tiene lugar una inestabilidad [inestabilidad de Küppers-
Lortz (KL)] que da lugar a una alternancia cı́clica entre los tres modos. En la
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versión original del modelo en que no hay dependencia espacial ni términos
de ruido, el sistema oscila entre las tres fases de tal manera que el periodo
de alternancia diverge con el tiempo, contrariamente a lo observado experi-
mentalmente. Mostramos como este problema puede ser solventado con la
presencia de fluctuaciones, que son modeladas mediante la adición de ruido
blanco a las ecuaciones. Asimismo, damos un procedimiento para el cálculo
analı́tico del periodo de alternancia en cierto régimen de parámetros. En dos
dimensiones, la inestabilidad de KL se analiza utilizando diferentes tipos de
operadores de difusión. Se observa que operadores con derivadas anisótropas
dan lugar a un periodo intrı́nseco de la inestabilidad esencialmente constante
con el tiempo, mientras que derivadas isótropas dan lugar a la divergencia
temporal de este periodo, al igual que sucede en el modelo original sin depen-
dencia espacial. Fuera de la región de la inestabidad de KL, hay un régimen
de coexistencia de tres estados estables en competición. En una dimensión es-
pacial se produce crecimiento de dominios hasta llegar a un estado homogéneo
que ocupa todo el sistema. Encontramos que el proceso de crecimiento es au-
tosimilar, con una ley de escala que posee dos comportamientos dominantes
claramente definidos. En dos dimensiones, el lı́mite de dinámica potencial da
lugar a un proceso transitorio de crecimiento de dominios que es autosimilar.
Por contra, la dinámica no potencial puede frenar el proceso de crecimiento
para sistemas suficientemente grandes. Estudiamos la influencia de efectos
no potenciales en el movimiento de frentes ası́ como la formación de defec-
tos formados por espirales de tres brazos. La presencia de estos defectos y el
movimiento no potencial de frentes son la causa de que el proceso de creci-
miento de dominios no tenga lugar en sistemas grandes. Cuando se elimina
una amplitud del modelo, no es posible la formación de espirales y se produce
coarsening. Este proceso de crecimiento, al igual que en una dimensión, es
autosimilar, con una ley de crecimiento distinta de la bien conocida del ĺımite
potencial.

El estudio que se realiza en el capı́tulo 3 se enmarca en el contexto general
de formación de estructuras espaciotemporales en sistemas con una simetrı́a
rota. En particular, estudiamos el efecto de una modulación temporal a una
frecuencia tres veces la crı́tica sobre una bifurcación de Hopf. El sistema
se modela con una ecuación de Ginzburg-Landau compleja con un término
cuadrático extra, que proviene del acoplamiento entre el campo externo y los
modos inestables. La ruptura de la simetrı́a de fase que provoca el forzamien-
to externo da lugar, por encima de una intensidad del forzamiento crı́tica, a
tres estados de fase estables. Para forzamientos grandes, el régimen excitable
posee las mismas propiedades dinámicas genéricas que el modelo de Busse-
Heikes estudiado en el capı́tulo 2. Por otra parte mostramos, tanto analı́tica
como numéricamente, la existencia de una transición entre espirales de fa-
se de un brazo y espirales de amplitud excitables de tres brazos cuando se
incrementa la intensidad del forzamiento.

Los sistemas ópticos no lineales ofrecen un cúmulo de oportunidades para
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el estudio de formación de estructuras y otros procesos de no equilibrio en los
que el acoplamiento espacial está producido por difracción en vez de difusión.
Sólo recientemente se han considerado estudios de crecimiento de dominios
para estos sistemas, y se han mostrado algunas leyes de crecimiento obteni-
das de simulaciones numéricas [9, 22, 23, 24]. No obstante, no se han descrito
mecanismos claros de crecimiento y no se ha considerado, en general, la vali-
dez de leyes de escala dinámica. Como ejemplo de un sistema óptico no lineal
en el que se pueden examinar los fenómenos de crecimiento de dominios y
escala dinámica, consideramos en el capı́tulo 4 la formación de estructuras
transversales en un medio kerr no lineal [25, 26]. Cuando se ilumina una ca-
vidad óptica de dicho medio con un campo externo, aparecen dominios de dos
estados estables de polarización en cierto régimen de parámetros. En esta si-
tuación de biestabilidad óptica, encontramos tres regı́menes correspondientes
a la evolución dinámica de tales dominios, a saber: estructuras laberı́nticas,
formación de estructuras localizadas y coarsening. Para este último, damos
evidencia de la existencia de escala dinámica con una ley de crecimiento re-
sultante de un movimiento interfacial gobernado por efectos de curvatura.

Finalmente, las conclusiones más relevantes de este trabajo se presentan
en el capı́tulo 5.





Summary

Context of the work

The internal evolution of Physics has given rise to an increasing interest in
the study of pattern formation out of equilibrium. Patterns may appear out
of thermodynamic equilibrium either as time-independent stationary states
or as dynamical states [1, 2]. Among the dynamical states, some of them are
persistent (including those with spatio-temporal chaos), and others are tran-
sient states where the processes of domain growth and dynamical evolution
of a spatial pattern can be studied [3]. Systems for which growth processes
have been studied include: simple and binary fluids, binary alloys, super-
fluids and superconductors, polymer blends, gels, lasers, geological systems
(minerals), chemically reacting systems, metals, glasses and crystalline ce-
ramics, order-disorder systems, magnetic systems, species segregation, and
population growth in predator-prey systems. There are basically two types of
growth in physical systems: interfacial or domain growth [4, 5] and growth
by aggregation of similar particles [6]. In this thesis we will consider the for-
mer, that refers to the dynamical evolution of a system having various stable
phases that coexist during the transient process towards a final state. The
phase separation dynamics of a binary alloy following a quench below a crit-
ical temperature constitutes a prototypical example of this situation. The
dynamical evolution is governed by interface motion and the creation of topo-
logical defects. A relevant quantity in the coarsening process is the average
domain size, whose time-dependence gives a characteristic growth law.

Growth processes in the approximation to a final state of thermodynamic
equilibrium are generally well-known [4]. Only recently, however, transient
dynamics when the final state is not of thermodynamic equilibrium have been
studied [7, 8, 9]. These dynamics are often nonpotential. The meaning of the
term “nonpotential” is explained in detail in chapter 1. Briefly, it indicates
that the dynamics does not minimize any known potential or free energy. It
gives rise to qualitatively different behavior and motion of defects and in-
terfaces. In a potential system, the relative stability of the various phases
allows to characterize interface motion [10]. On the contrary, there is not an
equivalent criterion of general validity for nonpotential systems. As a conse-
quence, it is difficult to characterize nonpotential dynamics, since every situ-
ation must in general be studied separately. Some works on front motion in
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nonpotential systems can be found in [11, 12, 13, 14, 15]. The main objective
of this thesis is the study of the processes involved in the approximation to-
wards a final state of a nonpotential system holding several stable states that
coexist in the transient dynamics. We will focus on systems whose properties
can be described in terms of nonconserved scalar order parameters.

In nonpotential systems it may happen that, despite the fact that sev-
eral stable phases coexist in the system, domain growth is inhibited and a
time-independent state is never reached. For example, the absence of coars-
ening can be due to the appearance of persistent dynamical states. Rotating
Rayleigh-Bénard convection is a well-known example [16, 17, 18]. Above a
critical rotation angular velocity, the system breaks up into a spatio-temporal
dynamical state in which the average domain size saturates to a statistically
constant value. In this work, we study nonpotential systems that may lead to
nonstationary final states out of equilibrium. In other situations, coarsening
can be stopped by the appearance of frozen spatial structures (labyrinthine
patterns, localized structures, etc.). Often, these structures are associated
with nonmonotonic front profiles, which can give rise to repulsive interaction
forces between domain walls. The existence of coarsening depends upon the
relative importance of this repulsive interaction and the effects that help do-
main growth. An example, developed widely in chapter 4, is the formation
of polarization domains in the transversal plane of an optical cavity when a
nonlinear kerr medium is illuminated with a linearly polarized input field. In
the regime where two linearly stable polarization homogeneous states coex-
ist (optical bistability), and depending on the input field intensity, there may
be coarsening, formation of localized structures, or creation of labyrinthine
patterns.

For systems that approach a final state of thermodynamic equilibrium, do-
main growth has been seen to be self-similar [4, 19]. This means that the
domain structure is, in a statistical sense, independent of time up to a global
scale factor: the systems exhibit dynamical scaling. There are other systems
that, while not possessing at all a characteristic length, still they are self-
similar over many length scales. Such systems are called fractals and have
become very important in the last years [20]. Dendritic solidification in a
undercooled medium, viscous fingering and ionic electrodeposition, are all ex-
amples of fractal growth. Dynamical scaling studies were very important to
understand scaling in fractal systems (multifractal scaling) which is a gener-
alization of the single scaling.

A natural question, which we address in this thesis, is the existence of
dynamical scaling for a nonpotential problem during the domain growth pro-
cess. However, very little work has been done previously in this area (ref. [8]
is an exception). This thesis intends to give a first step towards understanding
domain growth and dynamical scaling in nonpotential systems. For the non-
potential systems studied in this thesis, we give clear evidence of self-similar
dynamical evolution in a domain growth regime, with growth laws different



Summary xxv

from the ones corresponding to the limit of potential dynamics. Moreover, we
explain how the presence of topological defects, created along the transient
dynamics, and the nonpotential effects, may inhibit the coarsening process,
and sometimes give rise to persistent dynamical states.

Summary of the thesis

In chapter 1 we present some important known results about interface dy-
namics, both in potential and nonpotential systems. Firstly, we present a clas-
sification of dynamical systems, including a detailed explanation of the term
“nonpotential”, frequently used throughout this thesis. The second part of the
chapter reviews the basic concepts regarding domain growth and dynamical
scaling. Basic results about growth laws for different relevant systems are
presented. We also compare several systems in order to determine which are
the dominant growth mechanisms. Finally, we introduce the concept of scal-
ing function and explain how it can be used to characterize dynamical scaling.

In chapter 2 we consider a model with three coupled fields (Busse-Heikes
model [21]), which was proposed to study rotating Rayleigh-Bénard convec-
tion. Each field represents the amplitude of a set of parallel convective rolls
with a relative orientation of 60Æ with respect to each other. In general, the
dynamics is nonpotential and there are three stable phases that coexist, each
one associated with one of the three orientations. The rotation angular ve-
locity of the fluid cell is related to nonpotential effects in the model. Above a
critical rotation angular velocity, an instability that leads to a cyclic alterna-
tion between the modes takes place [Küppers-Lortz (KL) instability]. In the
original version of the model without spatial dependence or noise terms, the
system alternates between the three phases. Contrary to what is observed
in the experiments, the alternating period diverges with time. We show how
this problem can be circumvent with the presence of fluctuations, that are
modeled by adding white noise to the equations. Moreover, we give a pro-
cedure to calculate the alternating period analytically in a certain range of
parameters. In two spatial dimensions, the KL instability is studied by using
different kinds of diffusion-like operators. It is observed that operators with
anisotropic derivatives lead to an essentially constant intrinsic period of the
KL instability, whereas isotropic derivatives lead to the temporal divergence
of this period, as happens in the original model without spatial dependence.
Outside the unstable KL region, there is a regime in which three competing
stable states coexist. In one spatial dimension there is domain growth, and
the final state is an homogeneous solution filling up the whole system. We
find that this coarsening process is self-similar, with a growth law that pos-
sesses two clearly defined dominant behaviors. In two dimensions, the limit of
potential dynamics is such that there is domain growth with self-similar evo-
lution. On the contrary, the nonpotential dynamics may inhibit coarsening
for large enough system sizes. We study the influence of nonpotential effects
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on front motion as well as the formation of defects formed by three-armed
spirals. These defects, together with the nonpotential dynamics, are respon-
sible for coarsening inhibition in large systems. When only two amplitudes
are excited during the growth process, spiral formation is not possible and
coarsening takes place. This growth process, as in the case of one dimension,
is self-similar, with a growth law different from that of the potential dynamics
limit.

The study performed in chapter 3 belongs to the general framework of pat-
tern formation in systems with broken symmetries. In particular, we study
the effect of a temporal modulation at three times the critical frequency on
a Hopf bifurcation. The system is modeled with a complex Ginzburg-Landau
equation with an extra quadratic term, resulting from the strong coupling
between the external field and unstable modes. The forcing breaks the phase
symmetry, and three stable phase locked states appear above a critical forcing
intensity. For large forcings, the excitable regime exhibits the same generic
properties of the Busse-Heikes model studied in chapter 2. On the other hand
we show, both analytically and numerically, the existence of a transition be-
tween one-armed phase spirals and three-armed excitable amplitude spirals
when the forcing intensity is increased.

Driven nonlinear optical systems offer a wealth of opportunities for the
study of pattern formation and other nonequilibrium processes in which the
spatial coupling is caused by diffraction instead of diffusion. Only very re-
cently domain growth has been considered in some of these systems and some
growth laws obtained from numerical simulations have been reported [9, 22,
23, 24]. Nevertheless, clear mechanisms for the growth laws have often not
yet been identified. In addition, the question of dynamical scaling has, in
general, not been addressed so far. As a clear example of a nonlinear optical
system in which the issues of domain growth and dynamical scaling can be
addressed and for which detailed clear results can be obtained, we consider
in chapter 4 the formation of transversal structures in a optical cavity filled
with a nonlinear kerr medium [25, 26]. In a certain range of parameters,
when the cavity is illuminated with a linearly polarized input field, domains
of stable polarization states emerge. In this situation of optical bistability, we
find three different regimes corresponding to the dynamical evolution of such
domains, namely, labyrinthine patterns, formation of localized structures and
domain coarsening. For the latter we give evidence of the existence of dy-
namical scaling, with a growth law similar to that resulting from a curvature
driven interface motion.

Finally, the main conclusions of the thesis are presented in chapter 5.



Chapter 1

Interface Dynamics, Domain
Growth and Dynamical Scaling

1.1 Introduction

This chapter is devoted to the discussion of the fundamental laws that gov-
ern interface motion in spatially extended systems as well as to the problem
of domain growth. We will restrict the discussion to interfaces connecting
linearly stable asymptotic states in systems described by scalar order param-
eters. The propagation of fronts into unstable states has been studied else-
where [14, 27, 28].

For potential systems, a measure of the relative stability between asymp-
totic states is guaranteed by the existence of a Lyapunov potential [10], which
plays the role of a free energy. In one dimension, the direction of motion of
an isolated front is determined through the relative stability of the two lin-
early stable solutions. Specifically, the front velocity is proportional to the
Lyapunov potential difference between the asymptotic states. In higher di-
mensions, and in the case of equivalent states (that is, states with the same
value of the potential), the system tends to reduce the excess of energy lo-
cated on the interfaces by decreasing their length. As a consequence, small
domains shrink and the system coarsens. The driving force of this process is
the curvature of the interfaces [29]. This simple description is modified when
conservation laws restrict the dynamics [4, 30].

For systems without a Lyapunov potential (to be called nonpotential sys-
tems), the situation changes significantly. The study of front propagation can
no longer be done in terms of a free energy. It is known that a domain wall
between two dynamical equivalent states may move in d = 1 in either direc-
tion due to nonpotential dynamics [11, 13]. In d > 1 more complicated effects
may appear. In general we must study each case separately because of the
absence of a universal characterization of the dynamics.

The problem of the growth of spatial domains of different phases has been
thoroughly studied in the context of the dynamics of phase transitions: a sys-
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tem is placed in an unstable state and one considers its relaxation to the state
of thermodynamic equilibrium [4, 31]. This process is dominated by the mo-
tion of domain walls and other defects. Part of the fascination of the field is
that it constitutes a dynamical problem out of equilibrium. Specifically, it cor-
responds to a transition between two stationary states. On the other hand,
in the thermodynamic limit, final equilibrium is never achieved. The rea-
son is that the longest relaxation time diverges with the size of the ordered
phase. Instead, the system tries to achieve local equilibrium in increasing
length scales. As a consequence, domains of the different ordered phases in
equilibrium are formed and they grow in time (coarsening process). Asymp-
totic domain growth laws, with their underlying physical mechanisms, have
been well established. In particular interface dynamics and domain growth
depend on whether or not the dynamics is conserved. This in turn affects the
coarse-grained equation for the order parameter. A growth law L(t) � t1=2

holds for dynamics with no conservation law and domains made of equivalent
phases. This law follows from the minimization of surface energy, and it has
been shown to be robust against the appearance of point defects in systems
with a discrete number of phases, three dimensional vortices or chiral domain
walls [32, 33, 34]. Other well known growth laws [4] are L(t) � t1=3 for systems
with conserved order parameter [30] and L(t) � t for nonconserved dynamics
with a metastable phase [35], and also for hydrodynamic systems in spatial
dimension d > 2 [36].

Domain growth in systems that do not approach a final state of thermo-
dynamic equilibrium is much less understood. For example, the mechanisms
underlying a growth law L(t) � t1=5 in pattern forming systems in which the
spatial coupling is non purely diffusive (Swift-Hohenberg equation) [7, 37]
have not been clearly identified (see section 1.4.2.c). Other general issues
that need to be considered are the role of Hamiltonian vs. dissipative dy-
namics [8], the effects of nonrelaxational dynamics such as one-dimensional
motion of fronts between equivalent states [11], the emergence of localized
structures [38, 39, 40, 41], or transverse instabilities of domain walls leading
to labyrinthine patterns [42].

Historically there have been two routes in the study of coarsening pro-
cesses. One route is oriented towards the study of spin discrete models such
as the stochastic Ising model; often the Glauber dynamics [43] is studied for
the nonconserved case, and the Kawasaki dynamics of spin exchange [44]
for the conserved one. The second route is based on the study of time-
dependent Ginzburg-Landau equations, which describe the relaxational dy-
namics of a coarse-grained order parameter. In the classification of Hohen-
berg and Halperin [45], these equations are called model A (nonconserved)
and model B (conserved); case C corresponds to the coupling of a conserved
order parameter with a nonconserved one. In general these models contain
a noise term that accounts for thermal fluctuations. However, as the ther-
mal noise is irrelevant for quenches well below Tc (critical temperature), the
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stochastic terms can be put aside of the equations. In this case the Ginzburg-
Landau equations are deterministic and the only randomness is in the initial
conditions. This is different from the situation that takes place in some ki-
netic Ising models, which are stochastic by definition (even at T = 0), so the
average of any thermodynamic variable is realized not only over initial condi-
tions but also along the dynamical trajectories.

It is often believed that in spatial dimension d > 2, stochastic and deter-
ministic models belong to the same class of universality (at late times). How-
ever, in 1D at T = 0, the results are known to be different. We will see in
section 1.3.1 that in the one-dimensional Ginzburg-Landau model fronts mu-
tually interact via attractive forces giving rise to a growth law L(t) � log t. On
the other hand, in the stochastic 1D models, where fronts diffuse and anni-
hilate on collision, the growth law is L(t) � t1=2 (nonconserved case). In ref-
erence [46] the exponents that characterize correlations are studied for both
stochastic and deterministic models.

Systems that hold very different dynamics may exhibit the same growth
law. One example concerns the classical law L(t) � t1=2 observed in thermo-
dynamic systems such as order-disorder transitions. The dynamics is purely
relaxational and the mechanism for domain coarsening is the minimization of
surface tension, which implies a force per unit area, proportional to the mean
curvature, acting at each point of the walls. This same growth law applies
for the coarsening process of polarization domains in a nonlinear Kerr me-
dia [47] (see chapter 4). The system can be modeled by damped and driven
coupled nonlinear Schrödinger equations which involve a nonrelaxational dy-
namics. In this case interface dynamics is also curvature driven like in many
thermodynamic systems with nonconserved order parameter. However, the
dynamics does not follow the minimization of any obvious energy and the
concept of surface tension does not seem to be appropriate to explain inter-
face dynamics in this optical system with diffractive spatial coupling. The
Cahn-Hilliard dynamics or model B (see section 1.4.1.c) constitutes another
example for which the domain growth mechanism is well-known. This cor-
responds to a conserved scalar order parameter. The observed growth law
L(t) � t1=3 also appears in optical models such as the Degenerate Optical
Parametric Oscillator (DOPO) [9]; the associated dynamics is nonrelaxational
and it does not possess a conservation law. For this same system a growth law
t1=2 has also been reported in a different regime of parameters [48]. It seems
that the specific form of the spatial-dependent terms as well as the existence
of conservation laws both affect crucially the mechanisms responsible for in-
terface motion, and therefore the growth laws. Other factors that might have
influence on domain growth processes are: dimension of defects, whether the
model is discrete or continuous, and whether it is deterministic or stochastic.

In Fig. 1.1 we show several stages of the time evolution of domain growth
for the model A in 2D. This corresponds to a Ginzburg-Landau equation for a
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t = 15 t = 30

t = 60 t = 120

t = 165 t = 300

Figure 1.1: Several snapshots corresponding to a numerical simulation of model A dynamics
(see section 1.3.1). In the bulk of white (black) regions the field is +1 (�1). The structure of
domains seems to evolve self-similarly. Since the growth law for this system is L(t) � t1=2,
the structure of domains in a region of size A at time t will be dynamically equivalent to that
of a region of size 2A at time 4t as illustrated in the figure.
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nonconserved real order parameter  and real coefficients:

@t (r; t) = r2 +  �  3: (1.1)

If one looks at the images, it is seen that the domains at long times are sta-
tistically similar to those at earlier times, up to a global change of scale. In
other words, the coarsening of domains obeys dynamical scaling. Other phys-
ical systems with self-similar domain growth are spinodal decomposition of
binary alloys and phase separation in fluid mixtures.

Briefly, the scaling hypothesis states that, at long times, there exists a
characteristic length L(t) such that the domain structure is, in a statistical
sense, independent of time when lengths are scaled by L(t). In other words,
the dynamical evolution is self-similar and domain structure does not change
statistically up to a global scale factor. We will only consider growth processes
in the asymptotic dynamics, when well-defined domains have developed in the
system. There are some studies of growth phenomena for the early dynam-
ics (p.e. [49]), that correspond to the process of domain creation. It must be
stressed that the existence of dynamical scaling has only been proven rig-
orously for a few models, for instance the one-dimensional Ising model with
Glauber dynamics [50]. Nevertheless, there is a clear numerical and experi-
mental evidence of dynamical scaling for many other systems [19, 51, 52].

The chapter is organized as follows. In section 1.2 the term nonpotential is
explained and a short classification of dissipative dynamical systems is made.
In section 1.3 interface dynamics is studied by means of paradigmatic models
for both potential and nonpotential systems. In section 1.4 we present some
studies on domain growth for systems with different dynamics. Finally we
discuss in section 1.5 the issue of dynamical scaling; fundamental ideas are
explained and some relevant results for potential systems are presented.

1.2 Potential and Nonpotential Systems

Potential systems are characterized by the existence of a potential function or
Lyapunov potential, whose minima characterize the asymptotic state of the
system. The system evolves in time approaching the minima of the potential,
and once it reaches one of such minima, it remains nearby as long as per-
turbations on the system are not too large. If F is a Lyapunov functional (in
general, the Lyapunov potential will act on a space of dynamical functions A),
it must satisfy the relation:

dF [A]

dt
6 0; and F bounded from below; (1.2)

which guarantees that the (nondegenerate) minima of F are stable fixed
points of the dynamics. The absolute minimum of F is often called the stable
state, while the other minima are referred as metastable states. It might occur
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that the dynamics is not purely relaxational and a residual dynamics comes
into play once the relaxational part has taken the system to a minimum of F .

In a quite general way, we can write the time evolution equation of dynam-
ical variables describing a dynamical system as [53, 54]

@tA(x; t; f�g) = �S ÆF
ÆA� + v[A]; (1.3)

where A(x; t; f�g) is the vector of dynamical variables (in general, functions
or complex fields of the space coordinates, time and a set of parameters) de-
fined in a Hilbert space H, F is a real scalar functional F :D�H�!R, and
S
�
A(x; t; f�g)� is a positive operator1.
Basing on the decomposition (1.3) we can make a classification of the po-

tential systems as follows [53]:

A) When v = 0, the dynamics is purely relaxational and F is a Lyapunov
functional. The way the system relaxes towards the minima of F depends
on the peculiarities of the self-adjoint operator S. We can distinguish two
cases:

A.1) Relaxational gradient potential flow. We include in this class
those systems for which the operator S is a multiple of the identity.
The system evolves following the lines of maximum slope (steepest
descent) of F , which plays the role of a free energy. A well-known
example is the time-dependent Ginzburg-Landau equation (TDGL)
for a real field  (x; t) or model A dynamics (without noise):

@t = r2 � V 0( ); (1.4)

where V ( ) is a function with double-well structure, e.g. V ( ) =
(1 �  2)2. This equation gives the dynamical evolution of a system
described by a nonconserved scalar order parameter. It provides a
suitable coarse-grained description of the Ising model (continuous
version), as well as of binary alloys that undergo an order-disorder
transition on cooling through a critical temperature.
It is straightforward to see that eq. (1.4) can be rewritten in the form:

@t = �ÆFGL

Æ 
; (1.5)

FGL[ ] =

Z
dx

�
1

2

�
r 

�2
+ V ( )

�
: (1.6)

1An operator L defined in a Hilbert space H (on C ) is said to be positive when hv;Lvi �
0; 8v 2 H, being h�; �i the scalar product in H. Moreover, this definition tacitly demands the
hermiticity of L.
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A.2) Relaxational nongradient potential flow. In this case the oper-
ator S is not multiple of the identity and the dynamics does not fol-
low the lines of maximum slope of F . The Cahn-Hilliard equation or
model B dynamics (without noise) constitutes a well-known example:

@t = �r2
�r2 � V 0( )

�
= �r2

�
�ÆFGL

Æ 

�
: (1.7)

This system corresponds to a conserved scalar order parameter and
it models, for instance, phase separation in a binary alloy.

B) Nonrelaxational potential flow. Now v 6= 0 but F is still a Lyapunov
potential. The first term on the rhs of (1.3) represents the relaxational
part of the dynamics and the functional v[A] corresponds to the residual
dynamics. Most of the models used in equilibrium critical dynamics follow
this dynamics. An example for a complex field  is:

@t = �(1 + i)
ÆFGL

Æ �
: (1.8)

It is easy to check that FGL is a Lyapunov functional:
dFGL

dt
=

Z
dx

ÆFGL

Æ �
@t 

� + c.c. = �(1� i)

Z
dx

ÆFGL

Æ �
ÆFGL

Æ 
+ c.c.

= �2
Z

dx

����ÆFGL

Æ 

����2 6 0:

(1.9)

This case corresponds to S = 1, v = �i( ÆFGL=Æ 
�); the dynamics can be

decomposed into a relaxational gradient flow plus a term corresponding to
a conservative Hamiltonian dynamics.

For the general case (1.3) we have:
dF
dt

=

Z
dx

ÆF
ÆA� � @tA� + c.c.

= �
Z

dx

�
ÆF
ÆA

��
S

�
ÆF
ÆA

�
+

Z
dx

�
ÆF
ÆA

��
� v[A]� + c.c.

= �2 
ÆAF ; S ÆAF�+ 2 Re
�

v[A]�; ÆAF

��
;

(1.10)

h�; �i being a scalar product defined in H as hf ; gi =
R
dxf� �g and ÆAF �

ÆF=ÆA;“c.c.” stands for the complex conjugate. Since S is positive self-adjoint,
the first term of the last part of (1.10) is less or equal than zero. Hence, a
sufficient condition for F to be a Lyapunov functional is

Re
�

v[A]�; ÆAF

��
=

Z
dx

ÆF
ÆA� � v[A]� + c.c.

=

Z
dx

ÆF
ÆA� �

�
@tA

� + S
ÆF
ÆA

�
+ c.c. = 0:

(1.11)
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The orthogonality condition (1.11) can be proved to be equivalent to a
Hamilton-Jacobi equation [55]. Its solution is in general cumbersome, al-
though it can be obtained in some cases [56, 57, 58]. If nontrivial solutions
for F of (1.11) are found, we can say that the system is potential. Other-
wise, nothing can be guaranteed. In practice, we will say that a system is
nonpotential when a decomposition of the dynamics in the form (1.3) cannot
be found with a nontrivial F (that is, nonconstant) that decreases in time,
although we do not proof that a Lyapunov does not exist. An illustrative ex-
ample is the complex Ginzburg-Landau equation

@tA = (�R + i�I)A + (
R + i
I)r2A� (�R + i�I)jAj2A; (1.12)

whose dynamics was classified as nonpotential for a long time (up to limiting
cases) until Graham and coworkers, at least in a range of parameters, were
able to find an approximate nontrivial solution for (1.11), hence showing that
in the aforementioned regime the system dynamics may be characterized in
terms of a Lyapunov potential [59, 60]. In reference [53] a detailed discussion
about the numerical validity of such approximation can be found.

In potential systems, the Lyapunov functional gives information about
global stability. If two fixed points ��i(x; t; f�g), ��j(x; t; f�g) are such that
F [ ��i] 6 F [ ��j], we say that ��i is “more stable” that ��j. This means that if
the system is in the state ��j, we can make it switch to the state ��i by means
of a large enough perturbation (e.g. with noise). In a nonpotential system, on
the contrary, there are different criteria to determine the relative stability of
the asymptotic states. The motion of an interface between two linearly stable
solutions of a dynamical system was long ago proposed as a measure of rel-
ative stability for a nonpotential system [13]. It might be said then that the
most stable state will be the one that tends to overrun the other. However,
this is somewhat artificial, and the nonpotential effects must in general be
studied for every particular system.

1.3 Interface Dynamics

1.3.1 Relaxational Gradient Flow Systems

Interface dynamics in gradient systems is well-known [4, 10, 29, 61]. By
way of illustration, a study of interface motion in the context of the time-
dependent Ginzburg-Landau equation (model A dynamics), paradigm of the
order-disorder phase transitions, will be presented.

If  (r; t) is the coarse-grained order parameter (concentration, magneti-
zation, etc.) describing the system, its dynamical evolution is given by the
equation (1.4):

@t = r2 � V 0( ); (1.13)
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∆V

ψ
1

ψ
2

V(ψ)

ψ

Figure 1.2: Sketch of a potential function with two minima corresponding to the states  1

and  2.

where V ( ) is a function with double-well structure as shown in Fig. 1.2. In
the following we will accept the possibility of a potential difference between
the minima of V due to some external field.

When the system evolves from a random perturbation out of the metast-
able state  1, formation of stable droplets of the stable state  2 may be ex-
pected. The physical context corresponds to a single transformed region sur-
rounded by the parent phase from which it has nucleated. Assuming that the
order parameter does not depend on the orientation, equation (1.13) can be
written as: �

@2

@r2
+
d� 1

r

@

@r

�
 (r)� @

@t
 = V 0( ): (1.14)

Here d (> 1) is the dimensionality. It is useful to make a change of coordinates
to a reference system that moves with the interface. Thus, if R(t) is the posi-
tion of a reference fixed point measured from the origin at time t, we define a
new coordinate � as:

� � r � R(t): (1.15)

In Fig. 1.3 we show a diagram of an interface with spherical symmetry as
well as its profile along the radial direction. Taking into account the equiva-
lences

@

@r
! d

d�
;

@2

@r2
! d2

d�2
;

@

@t
! � _R

d

d�
; (1.16)
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ψ1 R(t)

ψ2

r

ψ2

ψ1

R(t) R(t)+WR(t)−W

ψ(r)

r0

Interface
width

Parent phaseψ1:
ψ2: Transformed phase

Figure 1.3: Spherical domain and profile along the radial direction of the associated inter-
face, which connects the stable homogeneous states  1 (parent phase) and  2 (transformed
phase), and varies significantly in a region of width 2W . R(t) is the position of a reference
fixed point on the interface taken from the origin, and it measures the radius of the domain.
Notice that for the nucleation of the phase  2 to occur, it is necessary that V ( 2) < V ( 1).

the time evolution equation for the interface profile in the moving reference
system becomes:

~ 00 +

�
d� 1

� +R
+ _R

�
~ 0 � V 0( ~ ) = 0; (1.17)

where ~ = ~ (�) �  (r; t). The primes indicate derivative of the function with
respect to its argument. Multiplying (1.17) by ~ 0 and integrating along the
interface, we are left with:

0 =

Z 1

�1
d�

1

2

�
~ 0(�)2

�0
| {z }

I1

+

Z 1

�1
d�

�
d� 1

� +R
+ _R

�
~ 0(�)2| {z }

I2

�
Z 1

�1
d� V 0( ~ ) ~ 0(�)| {z }

I3

:

(1.18)

The integrals I1, I2 and I3 will be computed next separately. On the one hand,
we have

I1 =
1

2

h
~ 0(+1)2 � ~ 0(�1)2

i
= 0; (1.19)

because ~ 0 = 0 far away from the interface. On the other hand:

I3 = V ( 1)� V ( 2) � �V; (1.20)
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where �V is the potential difference between the two asymptotic homoge-
neous states of the interface. Finally, we have

I2 =

Z 1

�1
d�

�
d� 1

� +R
+ _R

�
~ 0(�)2 = lim

W!1

Z W

�W
d�

�
d� 1

� +R
+ _R

�
~ 0(�)2

�
#

R�W

�
d� 1

R
+ _R

�
lim

W!1

Z W

�W
d� ~ 0(�)2 =

�
d� 1

R
+ _R

�Z 1

�1
d� ~ 0(�)2:

(1.21)

Gathering all the calculations, we arrive at the equation that gives the time
evolution of the radius of the stable phase (transformed phase):

d� 1

R
+ _R =

�VZ 1

�1
d� ~ 0(�)2

� vp: (1.22)

Hence, the quantity (d � 1)=R + _R is a constant of motion and it is equal to
the asymptotic velocity of the interface vp = _R(t ! 1). According to equa-
tion (1.22), this velocity is proportional to the potential difference between the
asymptotic states, which correspond to the minima of V .

At this point, it is convenient to make a distinction between one- and mul-
tidimensional systems, since the underlying physics is different depending on
the dimensionality.

d=1

In this case, the interface velocity is given by

vd=1 � _R = vp / �V; (1.23)

and, as consequence, if the two minima are equivalent (�V = 0), the (iso-
lated) front remains at rest. Otherwise it propagates at a constant velocity,
proportional to the potential difference between the asymptotic states. When
several fronts are present in the system and �V = 0, they move due to mutual
interactions. A domain delimited by two fronts tends to contract because of
short-range attractive forces.

W

D

F

The interaction force between two one-
dimensional fronts (kinks) of opposite topolog-
ical charge is given by [38, 62]

F / exp

�
�D

W

�
; (1.24)

where D is the interkink distance, and W is the kink width, as shown in the
previous figure. Expression (1.24) is only valid in the limit D � W (“dilute-
defects gas” approximation), that is, when the interkink distance is much
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greater than their width. This kind of interaction leads to a logarithmic vari-
ation with time of the domain size [38].

Let us consider a flat domain wall  0(x) connecting two equivalent states
 =  1 and  =  2. Then the excess of free energy per unit area associated to
the presence of the wall, which is nothing but the surface tension, is

� = FGL[ 0]�FGL[ 1] =

Z
dx

�
1

2

�
@ 0

@x

�2

+ V ( 0)� V ( 1)

�
; (1.25)

where x is the normal coordinate to the interface, and  0 its profile in equi-
librium. The energy conservation (kinetic + “potential”, in the one particle
scheme) is written as 1

2
(@ 0=@x)

2 � V ( 0) = �V ( 1). Consequently

� =

Z
dx

�
@ 0

@x

�2

: (1.26)

If the states are not equivalent, the planar front velocity [see (1.22)] can
be written as

vp =
�VZ
d�  0(�)2

� ��1�V; (1.27)

where the field profile  has been replaced by its value at vp = 0 to the lowest
order in vp. Therefore, the surface tension plays the role of an inverse mobility.
Notice that in this case of nonequivalence the asymptotic velocity depends on
the interface profile and therefore on the details of the potential. A study of
front motion based on energetic arguments can be found in reference [19].

d>2

The interface velocity is now:

vd>2 � _R = �d� 1

R
+ vp = �d� 1

R
+ vd=1: (1.28)

If the states are equivalent (�V = 0), then the time evolution of the domain
radius becomes:

_R(t) = �d� 1

R(t)
: (1.29)

Actually, equation (1.29) is a particular case of a more general law found by
Allen and Cahn [29]. This law states that interfaces move following the nor-
mal direction to each point with a velocity proportional to the mean local cur-
vature (sum of the principal curvatures):

vn(r; t) = ��(r; t); 8r on the interface: (1.30)
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Hence, when the asymptotic states are equivalent, front motion is determined
(for nonconserved fields) purely by the local curvature. The detailed shape of
the potential has influence on the front profiles, but it has no effect on their
dynamics (at long times). For spherical domains, the curvature is (d � 1)=R
and (1.30) reduces to (1.29). In contrast to what happens in one dimension,
an interface may move in d > 1 despite joining equivalent states. Just as in
one dimension, there also exist interaction forces between domain walls, but
their effect is negligible as compared with the curvature effect.

One of the consequences of (1.30) is that a closed domain always tends to
collapse, since it evolves by reducing the curvature of the surrounding inter-
face. In the case with spherical symmetry, integration of (1.29) gives

R(t) =
�
2(t0 � t) +R2

0

�1=2
; R0 = R(t0): (1.31)

Notice that R(t)2 � t, which gives the domain growth law for this sort of sys-
tems. We will elaborate on this in section 1.4.1.b.

It is easy to see that the order parameter saturates exponentially far away
from the walls. It follows then that the excess of energy is located on the
interfaces themselves, and that the driving force for domain growth is the
curvature, since the system energy can only diminish through a reduction in
the total wall area. As a consequence of this area reduction, the average do-
main size grows with time and coarsening takes place. The existence of a
surface tension entails a force per unit area, proportional to the mean curva-
ture, acting at each point of the interface. For model A dynamics, this force
induces front motion with a velocity proportional to the local curvature.

When the planar front velocity is greater than zero, the bulk driving force
due to a nonzero potential difference tends to expand a drop, contrary to the
shrinking effect of the curvature. It turns out that there exists a critical ra-
dius of the drop Rc (for spherical domains) such that any drop with a greater
radius will grow, whereas any smaller drop will contract until extinction. In
the light of the equation (1.22), it is clear that the critical radius is given by

Rc = (d� 1) v�1p : (1.32)

In general, we will talk of a critical curvature �c = vp above which the front
does not propagate (outwards). When vp 6 0, the planar front velocity helps
to contract the drop, in the same way as the curvature effect. In this case,
any drop will decrease regardless of its initial radius (actually this is true for
any closed domain not necessarily spherical). In relation to Fig. 1.2, the case
vp < 0 corresponds to a domain of  1 embedded in a sea of  2, and vp > 0 to
the reciprocal situation. In Fig. 1.4 we present plots of the time evolution of
the radius and interface velocity for a spherical domain in 2D, as result of the
integration of (1.22) with vp > 0. Plot (a) shows the radius as a function of
time when vp > 0 for an initial radius greater and smaller than the critical
one Rc = v�1p ; a third curve corresponds to the case without drifting (vp = 0).
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Figure 1.4: (a) Time evolution of the radius of a spherical domain in 2D. Two cases are
considered: 1) vp = 0:1, for R0 > Rc and R0 < Rc, and 2) vp = 0. (b) Interface velocity profile
for R0 > Rc.

When R0 > Rc, the domain grows with an increasing interface velocity tend-
ing to vp asymptotically [plot (b)]. Otherwise, if R0 < Rc, the drop contracts
with increasing velocity, since the curvature grows with time. In the case of
nonequivalent states (�V 6= 0), domain growth is dominated at long times
by the contribution of the planar front velocity vp leading to a growth law
L(t) � t [35].

1.3.2 Nonrelaxational Potential Flow Systems

Following reference [63], we present in this section some aspects concerning
interface motion for nonrelaxational potential flow systems (see page 7). Some
of the methods we will explain are directly applicable to nonpotential systems,
as it will be made clear later.

The authors of [63] consider fronts that connect symmetric states in a
one-dimensional system. They show that the problem can be analyzed in
terms of a free energy that takes the same value at the asymptotic states
(x! �1). Then front motion can be understood as a residual dynamics in an
extended attractor on which the free energy takes a constant value.

We first consider a gradient system:

@tA�(x; t) = B(0)
� (A; @x) = �1

2

ÆF0

ÆA�
; � = 1; : : : ; n; (1.33)

where F0 is a functional of the real field A(x; t). The system described by
(1.33) is assumed to have stable front solutions of the form A0(x) that join
two stable homogeneous solutions. Therefore, we have ÆF0=ÆA�

��
A0

= 0. Let us
perturb the system (1.33)

@tA�(x; t) = B(0)
� (A; @x) + "B(1)

� (A; @x): (1.34)
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Equations (1.33) and (1.34) are supposed to have the following symmetry
properties:

(SP1) Invariance under a certain group of symmetry G, and the symmetries
S, that connect stable homogeneous solutions of (1.33), are elements
of G.

(SP2) Spatio-temporal translation symmetry: x! x + x0, t! t + t0.

(SP3) Invariance under parity: x! �x.

It is clear that (1.34) is not a gradient system anymore, but it can be recast
as

@tA�(x; t) = �1

2

ÆF
ÆA�

+R�; (1.35)

R� =
1

2

ÆF
ÆA�

+B(0)
� (A; @x) + "B(1)

� (A; @x): (1.36)

Imposing the orthogonality conditionZ
dxR�

ÆF
ÆA�

= 0; (1.37)

the functional F is a Lyapunov potential and the dynamics of system (1.34) is
a nonrelaxational potential flow, where R� is now the residual part. It can be
proved that, to first order in ", the potential F can be written as F = F0+"F1,
where F0 is that of equation (1.33).

Let A1(x) = A0(x) + " ÆA0(x) be a stationary solution of (1.34), which is in
turn an extremum of F ; A0 will be assumed to be an extremum of F0. Then
we have:

0 =
ÆF
ÆA�

����
A1

=
ÆF0

ÆA�

����
A1

+ "
ÆF1

ÆA�

����
A1

: (1.38)

To leading order in ", we have the expansions:

ÆF0

ÆA�

����
A1

=
ÆF0

ÆA�

����
A0| {z }

=0

+
X
�

Æ

ÆA�

�
ÆF0

ÆA�

�����
A0

ÆA0� +O("2); (1.39)

ÆF1

ÆA�

����
A1

=
ÆF1

ÆA�

����
A0

+O("): (1.40)

Hence, to first order in ", (1.38) leads to the following linear equation for ÆA0:

" (L ÆA0)� =
ÆF0

ÆA�

����
A1

= �" ÆF1

ÆA�

����
A1

= �" ÆF1

ÆA�

����
A0

; (1.41)
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with L�� = (Æ=ÆA�)(ÆF0=ÆA�)
��
A0

.
First, we point out that the operator L is self-adjoint and, because of

the translational invariance property (SP2), its kernel is the set of functions
f@xA0�g. On the other hand, it can be shown that the solvability condition
for (1.41) is always satisfied. Therefore A1(x) always exists and once again,
due to the translational invariance, if A1(x) is an extremum of the potential,
the function A1(x� s), where s is a parameter, will be also an extremum [the
family of functions fA1(x� s); s 2 Rg constitutes an extended attractor of the
perturbed problem]. It follows that the functions A1 are tied to the residual
dynamics through the relation:

@tA1�

�
x� s(t)

�
= R�

�
A1

�
x� s(t)

��
: (1.42)

If R�

�
A1

�
x � s(t)

��
is different from zero, eq. (1.42) has sense only if s is

a function of time and the wall moves. As R� = O("), it is expected that
_s(t) = O("). If we call y � x� s, we get

� _s @yA1�(y) = R�

�
A0(y) + " ÆA0(y)

�
;

� _s
�
@yA0� + " @yÆA0�

�
= R�

�
A0(�)

�
+ "

ÆR�

ÆA�

ÆA0� + � � � ;

and to first order, it turns out:

_s @yA0� = R�

�
A0(y)

�
; (1.43)

where, by virtue of (1.33) and (1.36)

R�

�
A0(y)

�
= "

�
1

2

ÆF1

ÆA�

����
A0

+B(1)
� (A0)

�
: (1.44)

Following the method of reference [64], it is possible to calculate F1 near
the attractor and with it the front velocity:

_s(t) = �"


B(1)(A0); @yA0

�

@yA0; @yA0

� +O("2): (1.45)

An important consequence of what we have said so far is that if the residual
part R� is zero on the attractor, an interface will not move; the dynamics
of the system is purely relaxational and the role of the potential is just the
formation of the interfaces. A nonzero residual dynamics will cause a front to
move, up to a symmetry that cancels the numerator of (1.45).

The above derivation of (1.45) is interesting because it makes clear the
role of residual dynamics in front motion. However, a more general derivation
that does not rely on the form (1.35) of the equation of motion can be given.
If A0(x) is the front solution to the lowest order in ", we assume that a front
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solution of the perturbed system (1.34) is given by A1(y) = A0(y) + " ÆA0(y)
with y = x� ct, c = O("). Upon insertion of this solution into (1.34), it yields,
to order O("0):

0 = B(0)
� (A0); (1.46)

and to order O("1):

�c @yA0� = "
ÆB

(0)
�

ÆA

����
A0

ÆA0 + "B(1)
� (A0): (1.47)

Equation (1.47) can be rewritten as:

ÆB
(0)
�

ÆA

����
A0

ÆA0 = �c
"
@yA0� �B(1)

� (A0): (1.48)

The condition for the previous linear equation to be solvable, or in other
words, the condition for the perturbed system (1.34) to have a front solution
of the form A1(y), is that the rhs on (1.48) must be orthogonal to the nullspace
of the adjoint of the linear operator L � ÆB

(0)
� =ÆA

��
A0

. If L is self-adjoint, then
it turns out that

ker(L) = f@yA0g; (1.49)

as it is clear just by taking the derivative of (1.46) with respect to y. Hence:
�c
"
@yA0 �B(1)(A0); @yA0

�
= 0: (1.50)

Finally finding c from (1.50) we obtain (1.45). We want to stress the fact that
the method just explained does not depend on whether or not R� satisfies
the orthogonality condition (1.37). Even if the orthogonality condition is not
satisfied, we can take a perturbed gradient system and apply the previous
method to obtain the interface velocity. This will be used in the next section,
where the front velocity for a nonpotential system will be obtained.

A final remark on symmetry properties is important. Let A(1)
0 be a stable

front solution of (1.33) and let A(2)
0 = SA

(1)
0 be the new solution obtained by

transforming the former by the symmetry S belonging to the group of symme-
try G, which leaves the dynamical evolution equation invariant. Since

S��B
(1)
� (A0) = B(1)

� (A0); (1.51)

both front move at the same velocity according to (1.45) (S preserves scalar
products). On the other hand, the invariance under parity generates a new
front solution A(3)

0 (x) = A
(1)
0 (�x) moving in opposite direction. Summing up:

_s
�
A

(1)
0

�
= _s
�
A

(2)
0

�
= � _s

�
A

(3)
0

�
: (1.52)
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If A(2)
0 = A

(3)
0 , then _s

�
A

(1)
0

�
= 0, that is, the front does not move. In other

words, if a symmetry such that SA(1)
0 (x) = A

(1)
0 (�x) exists, then the front is

static, even if the residual part is different from zero.
It is interesting to observe that the wall motion may appear as the coun-

terpart of the motion in a limit cycle after a Hopf bifurcation. Let us consider
an equation of the form

@tA = (� + i�)A� AjAj2; (1.53)

which is a gradient flow if � = 0. When � 6= 0 it is possible to cast the system
into the form:

_X = �1

2

@F0

@X
+RX ; (1.54)

_Y = �1

2

@F0

@Y
+RY ; (1.55)

with A � X + iY , F0 = ��(X2 + Y 2) + 1
2
(X2 + Y 2)2, RX = ��Y , RY = �X.

The orthogonality condition RX(@F0=@X) + RY (@F0=@Y ) = 0 is automatically
satisfied in this case, so F1 = 0. Using polar coordinates A = rei�, it turns
out that r =

p
� on the attractor (@F0=@X = @F0=@Y = 0), and the velocity is

_s = _� = �. Notice that RX and RY can be eliminated by means of a change to
a reference system A! Ae�i�t that incorporates the motion in the attractor.

1.3.3 Nonpotential Systems

The complex Ginzburg-Landau equation (CGLE), one of the paradigms of
spatio-temporal chaos, constitutes an example of nonpotential system where
front motion has been studied [11, 14, 15]. The CGLE is an equation for
the spatio-temporal evolution of the envelope amplitude (slowly varying in
space and time) of the oscillations of a system near a Hopf bifurcation. We
will restrict ourselves to the CGLE in 1D parametrically forced at twice the
natural frequency. This situation gives a particularly clear example of non-
potential motion of a domain wall between equivalent states. We stress, how-
ever, as already said in section 1.2, that an approximate Lyapunov functional
for the CGLE without forcing has been found in a certain range of parame-
ters [53, 59, 60].

The evolution equation for the complex order parameter A of the Hopf
bifurcation is:

@tA = (�+ i�)A + (1 + i�)r2A� (1 + i�)jAj2A+ 
A�: (1.56)

All the parameters are real and 
 > 0 is the forcing amplitude. When the
parameters �, � and � are zero, equation (1.56) can be written in gradient
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form:

@tA = � ÆF
ÆA�

; (1.57)

F =

Z
dx

�
��jAj2 + jrAj2 + 1

2
jAj4 � 1

2


�
A2 + A�2

��
: (1.58)

In this limit, equation (1.56) possesses stable front like stable solutions that
connect linearly stable homogeneous solutions (ReA = �(� + 
)1=2, ImA = 0).
These are:

Ising wall:

XI = �(�+ 
)1=2 tanh

��
1

2
(�+ 
)

�1=2
x

�
; YI = 0; (1.59)

Bloch wall:

XB = �(�+ 
)1=2 tanh
�
(2
)1=2x

�
; YB = � (�� 3
)1=2

cosh
�
(2
)1=2x

� ; (1.60)

with X � ReA and Y � ImA. Notice that both solutions have well-defined
parity. The Ising wall is stable for 
 > 
c = �=3, and the Bloch one for 
 < 
c.
Therefore, for 
 = 
c an interchange of stability between both solutions occurs.
On the other hand, the phase � = arctan(Y=X) changes continuously from ��
to � across a Bloch front, while it changes abruptly in the case of an Ising
front.

In the potential limit (� = � = � = 0), both fronts are stationary since the
asymptotic states are equally stable. But, what happens in the nonpotential
situation? A perturbative approach can be carried out when the parameters
�, � and � are small. One then looks for a front solution in the form:

A
�
x� s(t)

�
= A0

�
x� s(t)

�
+ " ÆA0

�
x� s(t)

�
+O("2); (1.61)

where A0 is the front solution of the potential problem. The first solvability
condition for the existence of a stationary solution A1

�
x� s(t)� of (1.56) leads,

in the case of Bloch walls, to obtain the interface velocity _s(t). To leading order
in perturbation we are led to expression (1.45) with the identifications:

B(1)(A0)!
��~�Y0 � ~�Y 00

0 + (X2
0 + Y 2

0 )
~�Y0

~�X0 + ~�X 00
0 � (X2

0 + Y 2
0 )

~�X0

�
; A0 !

�
X0

Y0

�
;

where f�; �; �g = O(") and ~� = �=", ~� = �=", ~� = �=". The primes indicate
derivative of the function with respect to its argument y � x � s(t). In the
case of Ising walls, Y0 = 0 () B(1)(A0) = 0) and _s = 0. Hence, there exists
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Figure 1.5: Diagram of the Ising
and Bloch fronts in the potential
and nonpotential cases. Notice the
parity symmetry breaking in the
Bloch solution due to nonpotential
effects. This symmetry breaking
is responsible for the motion of the
front.
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a nonequilibrium analog of the static Ising wall. For the Bloch walls, the
interface velocity turns out to be:

_s(t) = �

�
�+ 


2


�1=2
3�

2(3�� 
)

��� + ��+ (�� �)

�
; (1.62)

where � = �p�� 3
, the extremal value of Y = ImA [� = Y (0)], is the “chiral
parameter”. To leading order, the wall velocity (1.62) is proportional to the
nonpotential coefficients f�; �; �g and its sign depends on that of the chiral
parameter. A localized breaking of parity, due to that of chirality, occurs at
the interface and leads to its motion (see Fig. 1.5).

When " is small and 
 > 
c, there are Ising walls between states of opposite
phase. For 
 < 
c, these domain walls convert into Bloch walls. The transition
occurs at the forcing value for which the wall starts moving. For �, � and �
small, the value of 
c is close to �=3.

Bloch-wall motion is rather surprising since the interface separates sym-
metric states, which would correspond to states of the same free energy in an
equilibrium problem. This motion is due to nonpotential effects, which show
up at the core of the wall.

1.3.4 Oscillatory tails in front profiles

Up to now, we have dealt with monotonic front profiles. We want to study in
this section the influence on interface dynamics of fronts whose profiles show
damped oscillatory tails. The contents of this section apply to both potential
and nonpotential systems. When we studied interface dynamics in the context
of the model A in section 1.3, we said that the detailed shape of the interfaces
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Figure 1.6: (a) Profile of a monotonic
front and corresponding heteroclinic
orbit in phase space, and (b) ı́dem for
a front showing spatial oscillations.

(a) (b)

ψ

ψ⋅

ψ

ψ⋅

does not affect the dynamics of domains at long times in a situation of bista-
bility. This may be no longer true when the front profiles show spatial oscil-
lations (see Fig. 1.6). It is known that the interaction between nonmonotonic
fronts can involve both attractive and repulsive forces [38]. Some physical
systems holding oscillating interfaces are studied in [22, 47, 65].

In 1D, oscillating domain walls with opposite topological charge may not
annihilate each other, but they may locate at a certain distance when an equi-
librium of forces occurs. In the case of multifront configurations, the system
may lock in an array of alternating kink and antikink solutions. These frozen
states are in general different for each particular realization of the dynamics
(initial conditions). This is a manifestation of spatial chaos. The nature of
this spatial chaos may be associated with the random pinning of defects with
exponentially damped oscillatory interactions. Therefore, unlike what hap-
pens with monotonic front profiles (e.g., for model A), coarsening in 1D can be
inhibited by this effect.

In higher dimensions, and for systems with short-range interactions, the
interaction force between walls is negligible as compared with other effects,
for instance the curvature driving force. However, when the interfaces are
very close to each other, the oscillatory tails might cause them to be mutu-
ally repelling, thus stopping the shrinking of a small domain. The repul-
sive forces induced by spatial oscillations may lead to the stabilization of a
closed domain of a stable phase at a certain radius. The result is a localized
structure. The oscillatory tails have been seen to be a necessary ingredient
(but not sufficient) for the formation of localized structures in bistable sys-
tems [22]. The localized structure is formed when the force that tends to
shrink the domain (e.g., a curvature driving force) is counterbalanced by the
self-interaction repulsive forces of the wall that surrounds the domain. The
oscillatory tails also play an important role in the formation of labyrinthine
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Figure 1.7: Two frozen configurations corresponding to system (1.66). The initial conditions
were a random perturbation of the unstable state  = 0.

patterns [42, 47, 66, 67]. In chapter 4 a nonlinear optical system that sup-
ports localized structures and labyrinthine patterns in a regime of bistability
is studied.

The existence of oscillatory tails can be determined by means of a spatial
linear stability analysis of the homogeneous asymptotic solutions. A nonva-
nishing imaginary part of any of the resulting eigenvalues reveals the exis-
tence of oscillatory tails in the front profiles; the real part has to do with the
damping rate of the oscillations. Let us see an example.
For model A, the stationary solutions satisfy

@xx � V 0( ) = 0: (1.63)

Let us call  1 and  2 the minima of the potential V . Writing  =  i + "e�x, we
get, upon insertion into (1.63),

�2 = V 00( i); i = 1; 2: (1.64)

Since the  i are minima of V , V 00( i) > 0, i = 1; 2, so that the eigenvalues �
given by (1.64) are real. Therefore, the fronts are monotonic. For the potential
V ( ) = (1�  2)2, the explicit expression for the domain walls is:

 (x) = � tanh
�p

2(x� x0)
�
; (1.65)

where x0 is any real number; this reflects the translational invariance of the
system. Let us consider now a generalization of model A, the extended Fisher-
Kolmogorov equation [68]:

@t = @xx � @xxxx � V 0( ): (1.66)
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This equation is frequently used as a model system for the study of pat-
tern formation from an unstable spatially homogeneous state [38]. The same
analysis as before yields four complex spatial eigenvalues, so that the fronts
have oscillatory tails. As said before, there may be a number of possible
frozen steady state configurations due to the random pinning of interfaces
(see Fig. 1.7).

1.4 Growth Laws

Next, we give some examples of systems, relaxational and nonrelaxational,
for which the time evolution of the characteristic domain size is known during
domain growth process.

1.4.1 Relaxational systems

A summary of growth laws for relaxational systems with purely dissipative
dynamics is shown in the next table (restricted to the constraint n 6 d) [19]:

n = 1 : L(t) �
(
t1=2 if � = 0;

t1=3 if � = 2;
(1.67)

n = 2 : L(t) �
(
t1=2 if � = 0;

(t log t)1=4 if � = 2;
(1.68)

n > 2 : L(t) � t1=(2+�); (1.69)

where n is the number of components of the order parameter (n = 1 is the
scalar case), � = 0 is the nonconserved case and � = 2 the conserved one.
Exceptional cases are excluded. This is the case of the two-dimensional XY
model for which numerical simulations of the conserved case are consistent
with L(t) � t1=4 [69].

There have been much work devoted to domain coarsening and dynami-
cal scaling in potential dynamics. Next, we present some prototype systems
which have been studied in detail.

1.4.1.a Kinetic Glauber-Ising model

The Ising model is the basic model of phase transitions and it was first used
to explain ferromagnetic properties. Its main virtue stems from the fact that
it leads to a exact treatment in Statistical Mechanics. In 2D, it constitutes a
nontrivial example of a phase transition that can be studied with all math-
ematical rigor. From its introduction in 1925 by Lenz, the Ising model has
served as paradigm in Statistical Mechanics, providing an inestimable tool
towards a better understanding of equilibrium and nonequilibrium systems
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(kinetic model). Although its microscopic bases are rather simple, it has the
necessary ingredients to explain a nontrivial behavior, in this case a critical
phenomenon associated with a second order phase transition (in dimension
two or greater).

The model is discrete and it is defined by the Ising Hamiltonian

H = �J
X
nn

SiSj; (1.70)

where J is a coupling constant and the Si are spin variables, which can take
values 1 or �1; “nn” indicates that the sum is performed over pairs of near-
est neighbors. The kinetic Ising model is defined by equations for the spin
configuration probabilities P which are constructed from the Hamiltonian H
(see [50, 70] for the details). In the case of Glauber dynamics these equations
are [43]:

d

dt
P (S1; : : : ; SN ; t) = �P (S1; : : : ; SN ; t)

X
i

1� Si tanh �hi
2

+
X
i

P (S1; : : : ;�Si; : : : ; SN ; t) 1 + Si tanh �hi
2

:

(1.71)

Here � = 1=T , hi = J
P

nn of i Sj is the local field at site i, and for conve-
nience periodic boundary conditions Si+N = Si have been adopted. The dy-
namics (1.71) leads to the final equilibrium state with a configuration prob-
ability given by the Boltzmann distribution P � e��H. Since the correlation
length is finite at any nonzero temperature, this system is particularly inter-
esting at T = 0, where equilibrium cannot be achieved in finite time: domain
growth proceeds indefinitely, yielding universal nonequilibrium behavior at
long times. The Glauber dynamics gives a residual noise at T = 0 that causes
interfaces to move randomly. If two adjacent interfaces meet, then they an-
nihilate. This process gives rise to a reduction in the number of walls, and
therefore to domain growth.

The characteristic domain size turns out to be L(t) � t1=2, independently of
the dimensionality. The domain structure is universal, in the sense that it is
independent of the nature of the random initial conditions, as long as L(t) is
large compared to any length scale characterizing the initial conditions.

It is surprising that the growth law does not depend on the spatial dimen-
sion, since the physics is different in 1D. In 2D there is a phase transition and
domain growth is curvature driven. In 1D there is neither a phase transition
nor curvature effects.

1.4.1.b Model A dynamics

This is a continuous model in terms of a coarse-grained order parameter
 (r; t) (e.g., the magnetization density) [eq. (1.4)]. Equation (1.4) provides a
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suitable coarse-grained description for the Ising model (continuous version).
It also describes alloys undergoing an order-disorder transition after cooling
through a critical temperature.

We already saw in section 1.3.1 that for this model the normal interface
velocity in d > 2 is proportional to the local curvature (Allen-Cahn law):

v(r; t) = ��(r; t); 8r on the interface: (1.72)

If there is a single characteristic scale L, then the wall velocity is v � dL=dt,
and the curvature � � 1=L. Equating and integrating gives L(t) � t1=2. There-
fore, in this case, the dynamical evolution of the order parameter can be com-
pletely described by interface motion driven by curvature (surface tension).
The form of the potential V only fixes the form of the front profile.

These growth laws can also be obtained using naive arguments based on
the results obtained in section 1.3.1 for spherical domains. We know that a do-
main of radius R collapses in a time of order R2. Therefore, crudely speaking,
after time t there will be no domains smaller that t1=2, so the characteristic
domain size is L(t) � t1=2. These arguments capture the essential physics
and yield the exact growth law (see for example [4]). The growth law for this
model has also been obtained using renormalization group techniques [71].

In 1D, at variance with the Glauber discrete model, the growth law is dif-
ferent. Besides being deterministic, in the 1D model curvature effects are
absent and coarsening takes place by means of short-range attractive forces
between adjacent fronts. If two contiguous fronts are separated a distance D,
they attract each other with a force given by (1.24):

F � exp(�D=W ); (1.73)

where W is the front width. The force F is proportional to the front velocity,
so if L is the characteristic domain size, we have

_L � e�L=W ) L(t) � log t: (1.74)

This result coincides with the one obtained by means of more elaborate
statistical calculations [72, 73].

1.4.1.c Model B dynamics

When the order parameter is conserved, as in phase separation, a different
dynamics occurs. In binary alloy, for example, it is physically clear that atoms
of the two phases are locally exchanged. This leads to diffusive transport
of the order parameter, and an equation of motion of the form (1.7), known
as Cahn-Hilliard equation or model B dynamics (without noise). A detailed
discussion of this model can be found in the lectures by Langer [61].
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In terms of the chemical potential � � ÆFGL=Æ , eq. (1.7) can be written as
a continuity equation

@t = �r�j mass conservation; (1.75a)

j = �r� Fick’s law (phenomenological): (1.75b)

A detailed analysis shows that the chemical potential � verifies the rela-
tions [19]:

r2� �= 0 in the bulk of a phase; (1.76a)

� �= ���
2

close to an interface: (1.76b)

Here � is the surface tension, � the local curvature and V ( ) is assumed to
have two equivalent minima at  = �1.

In order to study interface dynamics, equation (1.75b) is used. An inter-
face propagates with a velocity given by the imbalance between the current
flowing into and out of it, that is:

v� = jout � jin = �
�
@�

@x

�
= ��x �r��; (1.77)

where v is the interface velocity in the direction of increasing  , x is the nor-
mal coordinate to interface, and [� � �] indicates the discontinuity across the
interface.

As it was done for the nonconserved case, we can give an intuitive argu-
ment to determine the growth law of this model. From (1.76b), it follows that
the chemical potential has a typical value � � �=L on the interfaces and it
varies in a length scale of order L. The current, and therefore the velocity,
scale as jr�j � �=L2, giving dL=dt � �=L2 and L(t) � t1=3. This result has
been made evident by means of numerical simulations [74] as well as renor-
malization group treatment [75].

In the limit that one phase occupies an infinitesimal volume fraction, the
original Lifshitz-Slyozov-Wagner theory [76] convincingly demonstrates a t1=3

growth law. The physical mechanism is the evaporation of material (or mag-
netization) from small droplets and condensation onto larger droplets.

1.4.1.d q-state Potts models

Potts models are a class of (discrete) models of Statistical Mechanics used to
study phase transitions [77]. They are a generalization of the Ising model
(section 1.4.1.a). Their dynamics describes the coarsening of domains of q dif-
ferent equilibrium ordered phases following a quench from an homogeneous
phase. Potts models have been used to describe many physical systems such
as binary alloys, liquid crystals, magnetic bubbles, Langmuir films, and soap
bubbles. After the quench, domains of different ordered phases form and grow
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with time as the systems attains local equilibrium on larger and larger length
scales.

The system is considered on a lattice, and at each point of it, a variable or
spin si is defined. This variable can be thought as an indicator of the local mi-
croscopic state of the physical system and it might represent the orientation
of some kind of magnetic dipole located in a crystal lattice. In the q-state Potts
model, each spin variable can take q possible values: 1; 2; : : : ; q. The model is
built by taking a Hamiltonian that favors the situation in which neighboring
variables are oriented in the same way. In the kinetic model, the system fol-
lows a gradient relaxational dynamics in the landscape determined by this
Hamiltonian.

The number of states of the Potts model affects different aspects of the
growth process. The case q = 2 corresponds to the Ising model, and there are
experimental realizations also for q = 3; 4;1. The limit q ! 1 is known to
describe the evolution of a dry soap froth, or the growth of metallic grains.
Both for q finite and infinite numerical studies of domain growth [78, 79, 80]
give a L(t) � t1=2 growth law (in dimension greater than one). Its important
to notice that for q > 3 the system can hold vertices, that are point defects at
which several interfaces (at least three) coexist. The t1=2 law has been shown
to be robust against the presence of these vertices.

A suitable continuous version of the q-state Potts model is based on q
coarse-grained occupation density fields f�i(r; t); i = 1; : : : ; qg, such that �i
assumes the value 1 in the bulk of the ith ordered phase and decays continu-
ously to 0 outside. An suitable free-energy functional is [81]:

F�f�ig� = Z ddx

(
qX

i=1

�
1

2
(r�i)

2 + V
�f�ig���

�1

 
qX

i=1

�i � 1

!
+ �2

"
qX

i=1

�
�i � 1

q

�2

� q � 1

q

#2)
;

(1.78)

where V is a potential with q equivalent minima in (1; 0; : : : ; 0), (0; 1; : : : ; 0),
: : : , (0; 0; : : : ; 1); this prevents two different phases from sharing the same po-
sition in space. On the other hand, �1(r; t) is a Lagrange multiplier enforcing
the constraint

P
i �i = 1, and �2 � O(1) is such that the state (1=q; : : : ; 1=q) is

unstable.
The growth law L(t) � t1=2 is observed numerically 8q (in d > 2). In refer-

ence [78] an analytical procedure to find the scaling functions is given, as well
as the exponents describing the time dependence of autocorrelations.

1.4.1.e Swift-Hohenberg equation

The Swift-Hohenberg (SHE) equation was first introduced to model the onset
of a convective instability in simple fluids. It describes the time evolution of a
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real dynamical variable  (r; t) in the form:

@t (r; t) =
�
"� (1 +r2)2

�
 (r; t)�  (r; t)3: (1.79)

Equation (1.79) can be recast as:

@ (r; t)

@t
= �ÆFSH[ ]

Æ (r; t)
; (1.80)

where the (real) functional F is:

FSH[ ] =

Z
dr

�
�"� 1

2
 2 +

1

4
 4 � (r )2 +

1

2
(r2 )2

�
: (1.81)

The stationary solution  = 0 corresponds to a conductive state below the
instability. This occurs at " = 0 and gives rise to a convective steady state
with rolls of certain wavelength. Now, we distinguish between one- and two-
dimensional systems in the process of decay of the metastable state  = 0
for " > 0. In d = 1 essentially a single domain of a preferred wavenum-
ber emerges, whereas in d = 2 domains of different orientation of a selected
wavevector grow in time.

d=1

In reference [82] a numerical study of pattern formation in the
one-dimensional SHE is made. Special emphasis is put on the selected
wavevector of the emerging patterns.

In (1.79), the stationary state  (x) = 0 is unstable against perturbations
of wavenumber q such that !(q) = "� (q2 � 1)2 > 0. The fastest growing mode
is determined by @q!jq=q0 = 0 and it corresponds to q0 = 1. For " & 0 there
exist stationary periodic solutions characterized by a wavevector q 2 [q�L; qL],
q�L =

p
1� "1=2, L being the system size. On the other hand, only the solutions

with q�E 6 q 6 qE are stable; out of this interval, solutions are unstable
against long wavelength perturbations (Eckhaus instability). The value qE
can be computed analytically for " small and numerically for any " [83].

For long enough times,  (x; t) is seen to converge to a periodic station-
ary solution that depends on the initial random perturbation. The selected
wavenumber lies within a well-defined range centered around the fastest
growing mode during the linear regime after the instability.

Some works [84] suggest that the selection process follows a variational
principle and that the selected wavenumber is the one that minimizes the
functional (1.81) for any initial condition. In the numerical simulations it
is observed that the number of nodes of the field at long times is conserved.
This indicates that a wavenumber is selected. Actually the wavenumber field
distribution is centered around q = q0. In the study done in [82] the differ-
ence between the wavenumber q0 of the fastest growing mode and the one
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that minimizes FSH, qm, is within the numerical accuracy, so it is no possible
to make a clear conclusion. However, a later work [85] makes evident that,
under quite general initial conditions, the selected wavenumber is the one of
maximum linear growth q00. The authors analyze pattern formation growing
from initial conditions whose wavenumber is out of the stable band [q�E; qE].
A linear analysis shows that in this case q00 and qm are clearly different, which
allows to resolve which one is selected.

The addition to (1.79) of a stochastic term (e.g., Gaussian white noise) con-
siderably modifies the pattern selection process. Random fluctuations are
important during the initial stages after the instability, for a time interval
that depends on the relative amplitude of the fluctuations of the solution it-
self. Now, in contrast to the deterministic case, the final stationary solution
is not determined by the initial condition nor it shows a definite periodicity.
The stationary power spectrum is broad, indicating that stationary configura-
tions cannot be characterized by a unique wavevector, although there is still a
preferential wavevector. The spectrum gets wider with the amplitude of fluc-
tuations, and if these are not too large, the number of nodes is approximately
constant for each individual realization (at long times).

d=2

In references [37, 86] a study of coarsening and dynamical scaling of the SHE
in two spatial dimensions was made.

A notable feature of (1.81) is that it is minimized by a one-dimensional
periodic function corresponding to a configuration of straight and parallel
stripes. Although other systems select a characteristic finite wavelength, this
model differs from them in that the roll structure is rotationally invariant.

In the deterministic case, the presence of defects prevents that a solution
of parallel rolls minimizing FSH is reached. In a large enough system, the sta-
tionary solutions are made of domains of rolls with different orientation that
change with noise intensity. Stationary states are strongly influenced by any
source of random noise, so that, above a critical noise intensity, an isotropic
state emerges, and it is characterized by a diffusive peak in the structure
factor. Below this critical value, phases with much larger translational corre-
lation lengths emerge. A growth law L(t) � t1=5 is obtained with and without
noise (see [7] and references therein).

1.4.2 Nonrelaxational Systems

Little work has been devoted to the study of coarsening processes in nonre-
laxational systems. Next we summarize some recent work on this direction.
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1.4.2.a Nonlinear Schrödinger equation

The formation of singularities at finite time in nonlinear wave phenom-
ena (for example optics) is generically described by the (focusing) nonlinear
Schrödinger equation (NLSE):

i @t = �r2 � j j2 ; (1.82)

where  is a complex quantity that represents the amplitude of the wave, i.e.,
the electric field in optics. The nonlinear terms represents the action of a re-
fraction index that depends on the field intensity. The electric field diverges
at finite time for spatial dimension d > 2 and a large set of initial conditions.
Equation (1.82) cannot account for the formation of stable and intense light
pulses observed experimentally. For very large electric fields higher orders
in the expansion of the nonlinear refraction index must be included. In ref-
erences [8, 12] the formation of these localized structures when higher order
terms are added to (1.82) is studied. The starting point is the so-called sub-
critical NLSE:

i @t = �1

2
r2 � 2�cj j2 + j j4 : (1.83)

Here �c > 0 is a constant. This equation also appears in other contexts such as
the study of quantum solids and liquids, dynamics of magnetic and molecular
chains, nuclear hydrodynamics and nonlinear optics. It models for instance
(in the Hartree approximation) a bosonic system with two body attractive
interactions and three body repulsive interactions. In general the inverse
of �c represents the small expansion parameter of the nonlinear terms: for
j j2 � �c the cubic term is sufficient to describe the evolution of the system;
however, when j j2 � �c, one must add the quintic term. For superfluid He
II, �c is physically related to the critical density for cavitation, that is, the
density at which the sound velocity vanishes2.

The subcritical NLSE describes a Hamiltonian system where the energy
has two local minima. The dynamics of formation of droplets takes place out of
equilibrium. In addition, there is no explicit relaxation process: the dynamics
is completely reversible (and Hamiltonian). We point out that the NLSE can
be obtained as a limiting case of the complex Ginzburg-Landau equation when
the real parts of the coefficients are zero. Equation (1.83) can be rewritten in
the form:

@t = �i ÆFNLSE

Æ �
; (1.84)

FNLSE =

Z
ddx

�
1

2
jr j2 � �cj j4 + 1

3
j j6

�
:

2If we define � = j j2 as the local “density of the liquid”) (“density of light” in nonlinear
optics), � satisfies a wave equation @tt� = c2r2�, where c =

p
2�(�� �c) is the sound velocity;

therefore c vanishes for � = �c.
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We have that dFNLSE=dt = 0 and FNLSE is a conserved quantity. Also the total
number of particles N =

R
ddx j j2 is conserved. Moreover, (1.83) is invariant

under spatio-temporal translations and global phase changes.
The dynamics described by the subcritical NLSE provides for the forma-

tion of droplets that stabilize thanks to nonrelaxational dynamics [12, 87].
However, we stress that a nonrelaxational dynamics is not necessary (in a
nonconservative system) for the formation of localized structures. For in-
stance, the existence of oscillatory tails in the profiles of the fronts separating
the various phases may lead to the stabilization of droplets (see section 1.3.4).

In [8] the issues of domain growth and dynamical scaling are studied in
the Hamiltonian kinetics of a first order phase transition described by (1.83).
Starting from an uniform initial density �0 = j 0j2 slightly less that �c, a long
wavelength instability develops. Along the evolution three main stages may
be distinguished:

(S1) Exponential growth in time of density variations. Drops with the length
scale of the fastest growing mode are created.

(S2) Creation of well-defined domains with large (� �c) and small (� 0) stable
densities.

(S3) Coalescence of stable droplets and bubbles. This causes a decrease in the
number of domains and therefore the coarsening of the structure.

Between stages (S1) and (S2) an intermediate short stage takes place. Dur-
ing this period the pressure difference between the low density (gas) and the
large density (liquid) phases contracts the liquid phase, until the liquid den-
sity reaches 3

2
�c, the point where pressure equilibrium is established. In Fig.

1.8 four snapshots of the time evolution of the system are shown. We can
notice the coalescence phenomenon of gas bubbles.

Numerically the number of domains n(t) and their characteristic size L(t)
are observed to vary as:

Spatial
dimension n(t) L(t)

1 t�1=4 t1=4

2 t�1 t1=2

3 t�1 t1=3

Because of the slow coalescence or condensation of the small oscillating
droplets, the final state of the system is a single isolated droplet. The excess
energy transforms into vibrations of the droplet and small scale oscillations.
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Figure 1.8: A time sequence of
the coalescence of gas bubbles. The
gray scale represents the vapor
phase by a light gray and the liq-
uid by a dark gray. The images are
taken at (a) t = 36:2, (b) t = 61:1, (c)
t = 203:35, (d) t = 634:7 time units.
Taken from [8].

1.4.2.b One-dimensional cyclic Lotka-Volterra models

The classic Lotka-Volterra (LV) equations mimic the dynamics of interacting
species such as predator-prey systems. They predict successfully population
oscillations which are known to exist in nature. The competing dynamics of
these equations has been reproduced and controlled experimentally through
an optical system [88].

The cyclic N -species LV model is implemented in the following way. We
consider a one-dimensional lattice of size N with periodic boundary condi-
tions. Each site of the lattice is in a given state Ni with Ni = A;B;C; : : : .
Every species plays the role of prey and predator simultaneously. The food
chain is thus assumed to be cyclic; e.g., in the three-species system, A eats
B, B eats C, and C eats A. Every “eating” event leads to duplication of the
winner and elimination of the loser. An exhaustive study of this model is done
in [89]. Two kinds of dynamics are analyzed, namely

Sequential dynamics. We choose randomly a site and then one of its two near-
est neighbors. If the neighbor is a predator of the chosen site, the state of the
latter changes to the state of the predator.

Parallel dynamics. All sites are updated simultaneously and change their
state if one of their nearest neighbors is their predator. Interfaces move bal-
listically in such a way that two of them moving in the same direction do not
interact.

The coarsening behavior of the system depends on spatial fluctuations
present in the initial state as well as on the number of species. Only sym-
metric initial conditions are considered, that is, those for which the density of
each species is 1=N .
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In the case of two species, interfaces perform a random walk and anni-
hilate upon collision. This exactly soluble model is equivalent to the one-
dimensional kinetic Glauber-Ising model at zero temperature (page 23). The
system separates into single species domains whose characteristic size grows
as L(t) � t1=2. In contrast, mean-field theory predicts L(t) � t, result that,
although correct in the t ! 0 limit where correlations are absent, it is not
asymptotically correct because correlations are important at long times.

For three species, growth laws depend on the dynamics acting on the sys-
tem. In the case of parallel dynamics, the system organizes into large bal-
listically growing superdomains. Each superdomain contains interfaces mov-
ing in the same direction, neighboring superdomains contain interfaces mov-
ing in the opposite direction. The superdomain characteristic size grows as t
and that of subdomains separated by interfaces moving in the same direction
grows as t1=2. When the dynamics is sequential, interfaces perform a random
walk supplemented by superimposed diffusion. Unlike the parallel case, two
interfaces moving in the same direction may annihilate by a diffusive process
and give rise to an interface moving in opposite direction. The system orga-
nizes in domains that contain interfaces moving to the left and right. The
subdomain size grows as t3=4, whereas the larger scale domains evolve as in
the parallel case (� t).

Cases with four and five species are also studied in [89]. We stress that in
the case N > 5, the system quickly reaches a frozen state with noninteracting
neighboring species [90]; however, the approach towards saturation has not
been established, though. In [91] frozen structures of arbitrary dimension in
LV models are studied. In the realm of a Kirkwood approximation, a critical
number of species above which the system freezes is predicted analytically in
all spatial dimensions.

It is straightforward to generalize these models to reaction-diffusion equa-
tions, which have been widely applied to more complex ecological processes.
For example, in the three species system A, B, C, with reaction scheme

A+B ! 2A; B + C ! 2B; C + A! 2C; (1.85)

the extension to a reaction-diffusion model supplemented by reproduction and
self-regulation is expressed by the equations [89]:

@ta = @xxa + a(1� a) + � a(b� c);

@tb = @xxb + b(1� b) + � b(c� a); (1.86)

@tc = @xxc + c(1� c) + � c(a� b):

The previous system of equations is nonpotential and equivalent to the theo-
retical model studied in chapter 2 [eq. (2.53)] with the identifications ai ! A2

i ,
� = 0, Æ = ��. Equations (1.86) describe, for � 6= 0, a coarsening process
in which interfaces connect linearly unstable asymptotic states. The inter-
face velocity can be found through the “marginal stability principle”, which
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is a theorem for the Fisher-Kolmogorov equation [92] while for many other
reaction-diffusion equations the marginal stability principle has been veri-
fied numerically [1, 93]. In chapter 2 only coarsening processes with stable
domains are studied.

1.4.2.c Nonpotential Swift-Hohenberg equation

The SHE, as introduced in section 1.4.1.e, was introduced to look at the effect
of fluctuations on the transition to the convective roll state. It is an equa-
tion for a real order parameter  (r; t), function of the horizontal coordinates
r = (x; y) and time t. The SHE and various generalizations of it have proven
to be quite successful in explaining many of the features of convective flow in
Rayleigh-Bénard convection. In particular Swift-Hohenberg models describe
the spontaneous formation of spiral patterns in some fluid systems [94]. The
original SHE [eq. (1.79)] is potential and is the simplest one consistent with
the symmetries of the problem and the existence of a stripe pattern. How-
ever, potential dynamics is not always appropriate for this kind of systems far
from equilibrium, and so various modifications have been proposed. In partic-
ular, a modification of the nonlinear terms in suggested in [95]. The resulting
equation is:

@t = " � (r2 + 1)2 + 3(r )2r2 : (1.87)

The previous equation is nonpotential and gives a better representation of
the stability of the stripe phase as the wavevector and control parameter are
varied for convection. A further model, also nonpotential, incorporates a mean
flow varying with the horizontal coordinates [96, 97]:

@t +U �r = " � (r2 + 1)2 + NL;

r�U = 
 ẑ; (1.88)

�� @t
� �(r2 � c2)
 = gm ẑ �r(r2 )�r ;
whereU(x; y; t) is the divergence-free horizontal velocity that advects the field
 in the first equation [the symbol NL refers to the nonlinearity choices either
of (1.79) or (1.87)]. The velocity U is defined in terms of the vertical vorticity

, which is in turn driven by distortions of the stripe pattern through the third
equation. Here gm gives the coupling between the mean flow and the stripes,
and increases as the Prandtl number decreases. The remaining parameters
are associated with several fluid properties. Rotating Rayleigh-Bénard con-
vection has also been studied in the realm of Swift-Hohenberg models, both
with [98] and without [17, 99, 100] the inclusion of mean flow effects.

Domain growth in two-dimensional Swift-Hohenberg models has been ad-
dressed in reference [7]. The cases studied are the original SHE [eq. (1.79)]
and the two nonpotential generalizations (1.87) and (1.88). The authors in-
vestigate the formation of a “stripe” state in two dimensions, with rotational
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Figure 1.9: Stripe structure for (a) po-
tential and (c) nonpotential models of
convection during the coarsening process.
Black and white denote positive and neg-
ative values of the field respectively. Pan-
els (b) and (d) show the corresponding de-
fect structure which concern the regions
where the amplitude of the stripe pattern
falls below 75% of the maximum value.
Taken from [7].

(d)(c)

(a) (b)

invariance in the plane. This situation models Rayleigh-Bénard convection,
with the stripes corresponding to the familiar convection rolls. After a quench
into the ordered region, given by stepping the Rayleigh number, regions of
differently oriented stripes grow from random initial fluctuations as the dy-
namics rapidly drives the system locally to a state with the characteristic
length scale of the stripes. It is interesting to know how the length scale over
which the stripes are ordered grows and what is the asymptotic wavelength of
the structure (that is, what is the selected wavevector). The numerical results
of [7] reveal a slow evolution of a length scale �q, defined as the width of the
wavevector distribution in Fourier space, consistent with �q � t1=5 for all three
cases studied: potential, nonpotential, and with the inclusion of mean flow
(also nonpotential). For the nonpotential cases, they found a second length
scale �r defined from the correlations of the orientation of the stripes in real
space, and it appears to show a different behavior consistent with �r � t1=2.
The appearance of a second length scale may be due to the fact that corre-
lations along the stripes are stronger than perpendicular to the stripes. It
seems that the selected wavevector is that at which isolated dislocations are
stationary.

The morphology of the system turns out to be quite different for the poten-
tial and nonpotential cases, as shown in Fig. 1.9. For the potential equation
the pattern may be roughly described as consisting of domains of straight
stripes with sharp boundaries between the domains, although there are also
some regions where a smoother variation of the stripes is seen. Two kinds of
domains may be identified: lines where one set of stripes ends and a second
set starts, and lines where there is a sharp kink in the stripe orientation, but a
smaller perturbation of the amplitude (this is the reason why these kinks are
not observed in panel (b) of Fig. 1.9). For the nonpotential equations stripes
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smoothly curved over the characteristic scale are evident; also isolated dislo-
cation defects are more apparent.

The defect structure of stripe phases is complicated, and understanding
the role of the various defects in the coarsening process remains a challenge
for the future. For example, it is not understood yet why the addition of noise
causes an increase in the growth rate of the characteristic length scale, be-
cause noise is expected not to be relevant at long scales. Elder, Viñals and
Grant [37] find a t1=4 law with noise, whereas a t1=5 dependence is found in
[7, 37] in the absence of noise.

1.4.2.d Nonlinear optical systems

Optical bistable systems provide examples of nonequilibrium systems under-
going instabilities leading to pattern dynamics [101]. Transverse pattern dy-
namics is often studied by means of models involving a nonrelaxational dy-
namics, and the issue of domain growth has been studied in a number of these
systems. We postpone the discussion until chapter 4, where we give a sum-
mary of the most outstanding results concerning domain growth in optical
systems. We will study in detail the kinetics of pattern formation in an op-
tical cavity filled with an isotropic Kerr medium pumped with an external
input field.

1.5 Dynamical Scaling

Two functions frequently used to explore the domain structure are the equal-
time correlation function

C(r; t) =


�(x+ r; t)�(x; t)

�
i.c.; (1.89)

and its Fourier transform, the equal-time structure factor,

S(k; t) =


�̂(k; t)�̂(�k; t)�i.c. = Ĉ(k; t): (1.90)

The angular brackets indicate an ensemble average. The structure factor
is a fundamental measure of the nonequilibrium properties of the system.
The existence of a single characteristic length scale implies, according to the
scaling hypothesis, that the pair correlation function and the structure factor
have the scaling forms:

C(r; t) = f
�
r=L(t)

�
; (1.91a)

S(k; t) = L(t)d f̂
�
kL(t)

�
; (1.91b)

where d is the spatial dimensionality, and f̂(k) is the Fourier transform of
f(x). The scaling limit is defined by r � �, L � �, with r=L arbitrary, where
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Figure 1.10: Scaling function for the model A in two dimensions. The continuous line corre-
sponds to the theoretical prediction by Ohta, Kawasaki and Jasnow. Symbols are � t = 100,
� t = 200, M t = 300, � t = 500. Taken from [102].

� is the equilibrium correlation length. In a system evolving selfsimilarly,
when plotting C(r; t) against r=L(t) for different times, all the curves follow
the same profile, the profile of the scaling function f(x). The scaling forms
(1.91a–b) are well supported by simulation [51] data and experiments [52]. In
Fig. 1.10 the scaling function profile for model A is shown.

There are several ways to find the characteristic length L(t) = K(t)�1.
For example K(t) could be defined as K1(t), the first moment of S(k; t). Al-
ternatively, K(t) might be chosen as the position Km(t) of the maximum of
S(k; t). If there exists a unique time-dependent characteristic length, any
choice must be valid. In Monte Carlo studies it is convenient to use K1(t),
partly because it is difficult to determine Km accurately. In other cases, such
as binary fluids experiments, it is common to use Km(t) since its position can
be determined quite accurately. For systems with nonconserved order param-
eter, as ferromagnetic materials and order-disorder transitions, it turns out
that K1 = Km = 0, but it is possible to take K(t) =

p
K2(t), where K2 is the

second moment of S(k; t). In all the cases, K(t)�1 is supposed to be a measure
of the size of the ordered regions developing in the system.

The scaling forms (1.91a–b) are certainly plausible. However, it should be
noted that the existence of a dominant length scale does not imply necessar-
ily that f(x) is independent of time. Corrections to dynamical scaling such
that f is weakly time-dependent may be expected. The scaling function f is
not a universal function in the sense that it can depend on thermodynamic
variables that characterize the cooling point. For example, the scaling func-
tions for binary alloys and fluids depend on temperature and concentration,
although weakly. Other aspect to keep in mind is that if (1.91b) is correct,
a number of magnitudes are related, for example the position of the peak of
the structure factor Km(t) and its height S(Km(t); t). So, if we take k = Km(t),
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(1.91b) implies

S(Km(t); t) = K�d
m f̂(1): (1.92)

If we assume that the height of the peak and its position follow a power law
behavior with exponents � and �, then from (1.92) we infer

C1 t
� = C2 t

�d f̂(1)) C1C
�d
2 t���d = f̂(1)) � = � d: (1.93)

Fisher and Huse [103] indicated that the two-time correlation function
C(r; t; t0) = h�(x; t0)�(r + x; t)i also possesses nontrivial scaling properties. A
simple generalization of (1.91a) gives

C(r; t; t0) = f
� r
L
;
r

L0

�
; (1.94)

where L = L(t) and L0 = L(t0). Specially interesting is the limit L � L0 for
which equation (1.94) adopts the form

C(r; t; t0)!
�
L0

L

���

h

�
r

L

�
; L� L0; (1.95)

where �� is a nontrivial exponent related to the phase order kinetics; it has
been measured in an experiment with nematic liquid crystal films [104]. The
autocorrelation function A(t) = C(0; t; t0) is therefore a function only of the
quotient L0=L, with A(t) � (L0=L)�� for L� L0.

1.5.1 Porod’s Law

The presence of topological defects, seeded by the initial conditions, in a sys-
tem undergoing phase ordering has an important effect on the form of the pair
correlation function at short distances, and therefore on the structure factor
at long wavenumbers.

Let us consider a system governed by a scalar order parameter � such that
the homogeneous states � = �1 are stable. Consider two points x and x + r,
with � � r � L. The product �(x)�(x + r) will be �1 if an interface passes
between them, and +1 if there is no interface. Since r � L, the probabil-
ity to find more than one interface can be neglected. The calculation of the
correlation function at short distances amounts to find the probability that
a randomly placed rod of length r cuts a domain wall. This probability is of
order r=L , so we estimate

C(r; t) � (�1) r
L

+ (+1)
�
1� r

L

�
= 1� 2r

L
; r� L: (1.96)

The factor 2 in this result should not be taken into account seriously. We are
interested in the scaling limit defined by r; L � �, with x = r=L arbitrary.
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The form (1.96) implies a power law tail in the structure factor, which can be
obtained by simple power-counting

S(k; t) � 1

Lkd+1
; kL� 1: (1.97)

Equation (1.97) expresses a result known universally as Porod’s law. It was
first written down in the general context of scattering from two-phase media.
The factor 1=L is simply (up to constants) the total area of interface per unit
volume. Taking this into account, structure factor measurements may be used
to find this area.

If Porod’s law applies, it means that the interfaces are abrupt. The large
field gradients near defects give rise to a nonanalytic behavior of the scaling
function f(x) at the origin for pair correlations.

1.5.2 Scaling Solution in the One-dimensional Glauber-
Ising Model

There are few exactly solved models of phase-ordering dynamics, and al-
though they are quite far from describing systems of physical interest, some
qualitative features survive in more physically relevant models.

We will only consider here the kinetic Ising model in 1D [50]. This and
other examples can be found in [19] and references therein.

As said in section 1.4.1.a, the one-dimensional Ising model with Glauber
dynamics is a discrete model with a nonconserved order parameter. The model
is defined by equations (1.70) and (1.71).

From (1.71) it is not difficult to find the equation of motion for the pair
correlation function Cij = hSi(t)Sj(t)i, where the brackets represent an aver-
age over the distribution P . If the set of initial conditions is invariant under
translations, Cij depends only on the separation r = ji � jj after averaging.
Thus

_C(r; t) = C(r + 1; t)� 2C(r; t) + C(r � 1; t); r 6= 0: (1.98)

For r = 0, C(0; t) = 1, 8t trivially. The simplest way to obtain C(r; t) in the
scaling limit is to take the continuous limit of (1.98). This leads to the dif-
fusion equation @tC = @rrC, with constraint C(0; t) = 1. A scaling solution
obviously requires L(t) � t1=2. Upon insertion of C(r; t) = f(r=t1=2) in the dif-
fusion equation, it yields f 00 = �x

2
f 0. The integration of this equation with

boundary conditions f(0) = 1, f(1) = 0 gives f(x) = erfc(x=2), where erfc is
the complementary error function. Thus the scaling solution is

C(r; t) = erfc
� r

2t1=2

�
: (1.99)

In particular, at short distances

C(r; t) = 1� r

(�t)1=2
+O(r3=t3=2); (1.100)

so that Porod’s law is satisfied.
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1.5.3 Scaling Function Theories

There is no doubt that the calculation of scaling functions is a much more
arduous task that the determination of growth laws. In fact, it has been a
long-standing challenge. In spite of this, scaling functions can be calculated
in a number of soluble models. A number of approximate scaling functions
have been proposed for nonconserved fields. The most physically appealing
approach for scalar fields (governed by a potential dynamics) is that of Ohta,
Jasnow and Kawasaki (OJK) [105], which starts from the Allen-Cahn equa-
tion (1.72) for the normal velocity of the interfaces.

In their work, OJK replace the physical field �(r; t), which takes the values
�1 everywhere except at domain walls, where it varies rapidly, by an auxiliary
field A(r; t) smoothly varying in space. This is achieved by using a nonlinear
function �(A) with a “sigmoid” shape (such as tanhA). The OJK theory in-
cludes interface dynamics defined by the zeroes of A. As a starting point, the
normal velocity of a domain wall is considered. This is given by the Allen-
Cahn law v = �� = �r�n, where � is the local curvature and n = rA=jrAj
is a unit vector normal to the wall. This gives

v =
�r2A+

P
i;j ninjrxi �rxjA

jrAj ; (1.101)

where fxig are the Cartesian coordinates. In a frame of reference comoving
with the interface

dA

dt
= 0 =

@A

@t
+ v �rA =)

#
vkrA

v = � 1

jrAj
@A

@t
: (1.102)

Eliminating v between equations (1.101) and (1.102), we obtain a closed equa-
tion for the auxiliary field A:

@A

@t
= r2A�

X
i;j

ninjrxi �rxjA: (1.103)

The next step of OJK was to replace ninj by its spherical average Æij=d [This
is equivalent to linearize eq. (1.103)], obtaining the diffusion equation

@A

@t
= Dr2A; D � d� 1

d
: (1.104)

A convenient choice for the distribution of initial conditions is a Gaussian
distribution for the field A(r; 0), with mean zero and correlator
hA(r; 0)A(r0; 0)i = � Æ(r � r0). With this, it is straightforward to calculate the
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pair correlation function:

A(r; t)A(0; t)

�
=

1

(2�)d

Z
dk dk0 eik�re�D(k2+k02)



Â(k; t)Â(k0; t)

�

=
�

(2�)d

Z
dk eik�re�2Dk2t =

�

(2�)d

dY
n=1

Z +1

�1
dkn e

�2Dk2nt+iknxn

=
�

(2�)d

dY
n=1

� �

2Dt

�1=2
exp

�
� x2n
8Dt

�

=
�

(8�Dt)1=2
exp

�
� r2

8Dt

�
:

(1.105)

To calculate the pair correlation function of the original field �, we need
to know the joint probability distribution for A(r; t) and A(0; t), which is rel-
atively simple to write down for a Gaussian field satisfying a diffusion equa-
tion. In the scaling regime, walls occupy a negligible fraction volume. Thus,
the field �(A) can be replaced by sgn(A). With all this considerations, it is
not difficult to find the scaling function (after some tedious analytical calcula-
tions) which turns out to be

f̂(x) =
2

�

(2�)d=2

x

Z 1

0

dRRd(eR
2 � 1)�1=2(xR)1�d=2Jd=2(xR); (1.106)

where x = kL(t) and J is a Bessel function of first class. We remember that
(1.106) is in principle only valid for nonconserved scalar order parameters in
dimension greater or equal than two. For example, simply substituting d = 1
in (1.106) the scaling function for the one-dimensional Ising-Glauber model
is not recovered. Expression (1.106) together with the scaling forms (1.91a–
b) fit very well data from numerical studies for a number of systems (see for
example Fig. 1.10).

There exist other more sophisticated methods to calculate scaling func-
tions, but all of them are elaborated on the basis of the OJK theory. This is
the case of the Mazenko approach ([19] and references therein). This approach
combines a clever choice for the function �(A) with the minimal assumption
that the field A is Gaussian. Specifically, �(A) is chosen to be the equilibrium
interface profile function, defined by �00(A) = V 0(�), with boundary conditions
�(�1) = �1, �(0) = 0. The field A then has a physical interpretation, near
walls, as a coordinate normal to the wall.

The main advantages of the Mazenko approach are

(A1) Only the assumption that the field A is Gaussian is required.

(A2) The scaling function has a nontrivial dependence on d. In fact, the scal-
ing function of the one-dimensional Ising-Glauber model is recovered in
the limit d! 1, and for d!1 the OJK function is obtained.
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(A3) The nontrivial behavior of different time correlation functions emerges
in a natural way.

The Mazenko approach can be used with some modifications for both scalar
and vectorial fields.

Another more sophisticated theory has been developed by Bray and Hu-
mayun [106], and has the advantage that it can, in principle, be systemati-
cally improved. For scalar fields, the time-dependent Ginzburg-Landau equa-
tion (1.4) is taken as a point of departure. The idea that the detailed form
of the potential is not important in driving interface motion is exploited. We
recall that interfaces move only at long times due to local curvature effects.
Therefore, the scaling function must be independent of the potential (that is,
of the particular profile of the domain walls), which allows to chose a partic-
ular V (�) such that the partial differential equation for the field A(r; t) is as
simple as possible. This approximation recovers scaling functions of prece-
dent theories in leading order.



Chapter 2

Domain Growth in the
Busse-Heikes Model for Three
Competing Amplitudes

Abstract. We consider in this work a nonpotential model for three com-
peting amplitudes which has been proposed to study rotating Rayleigh-Bénard
convection. When the strength of the nonpotential terms is larger than a critical
value, an alternation between three unstable asymptotic states takes place. This
corresponds to the so-called Küppers-Lortz instability in the fluid description. In
0D we find, in a certain range of parameters, a Lyapunov potential that allows
us to split the dynamics into a relaxational plus a residual part. We give explicit
relations for the time variation of the amplitudes and the period of the orbits as
a function of the energy. On the other hand, we show how the addition of noise
to the equations can stabilize the switching period between the unstable states.
In 1D we present a study of dynamical scaling and domain growth below the
Küppers-Lortz instability. We find that dynamical scaling holds as in the poten-
tial case, but with a crossover between two well defined regimes characterized
by a logarithmic and linear domain growth, respectively. In 2D the formation
of rotating amplitude spirals may prevent coarsening below the Küppers-Lortz
instability region. When a field amplitude is excluded, spiral formation is no
longer possible and domain growth takes place. We checked that the dynamics
is self-similar, with a modified growth law with respect to the potential limit.
The effect of different kinds of spatial-dependent terms on the dynamics is also
studied.

2.1 Introduction

Rotating Rayleigh-Bénard convection constitutes a well-known example of a
physical system for which the final state is far from thermodynamic equi-
librium. Several equivalent states coexist in the system and they are sub-
jected to a nonpotential dynamics. The study of rotating convection was di-
rectly motivated by the dynamics of planetary and stellar atmospheres and
the circulation of ocean currents. Rotating convection has been studied in
the realm of Swift-Hohenberg models with [98] and without [17, 99, 100] the
inclusion of mean flow effects. So far, experiments on rotating convection
have only been performed for small Prandtl numbers. Large Prandtl num-
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Figure 2.1: (Left) scheme of the convection of a fluid under rotation. When the rotation
angular velocity 
 goes beyond a certain threshold, the convective rolls become unstable,
giving rise to a self-sustained spatio-temporal chaos regime (KL instability). (Right) time
sequence of Küppers-Lortz unstable domains. Taken from [107].

bers lead to more rigid convection rolls so that the mean flow coupling can
be neglected. Specially interesting, both experimental and theoretically, is
a spatio-temporal regime that takes place above a rotation angular velocity.
The system breaks up into a persistent dynamical state such that set of par-
allel convection rolls are seen to change orientation (in the reference frame
that moves with the fluid) with a characteristic period. This phenomenon is
known as the Küppers-Lortz (KL) instability [16] (see Fig. 2.1). Experimen-
tal characterization of complex spatio-temporal dynamics in the KL unstable
region has been reported in some works (see for example [107, 108, 109]). The
KL instability has the attractive feature that it appears immediately at the
onset of convection for arbitrary small amplitudes as long as the rotation an-
gular velocity is sufficiently large. This feature makes it theoretically more
tractable than most other systems with spatio-temporal chaos, since weakly
nonlinear theory in the form of amplitude equations is expected to be appli-
cable. In the limit of large Prandtl numbers, three-amplitude models have
shown to exhibit the same qualitative features as more sophisticated Swift-
Hohenberg models [17] that take into account the full range of possible roll
orientations.

In this chapter we study a model proposed by Busse and Heikes to describe
the KL instability. It consists of three coupled amplitude equations in the
rotating frame, corresponding to three modes with wavevectors advanced 60Æ

with respect to each other in the direction of rotation. As previously done by
other authors [99, 110, 111], we incorporate spatial effects to account for the
dynamical evolution of spatial domains.
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From a dynamical point of view, the Busse-Heikes (BH) model describes
the time evolution of three competing equivalent states under a nonpotential
dynamics, both below and beyond the KL instability threshold. This model
is mathematically equivalent to the May-Leonard biological model of com-
petition between three species [112]. Other three-state models under cyclic
dynamics have been studied elsewhere (see for example [89, 113] and refer-
ences therein). The zero-dimensional version of the model captures certain
elements of KL convection. In particular, the alternating period between the
modes can be worked out analytically in a certain range of parameters. With
the inclusion of noise terms in the model the period of the orbits saturates to a
constant statistical value. In the limit of small noise intensities, an analytical
approach to the mean period can be given. When spatial-dependent terms are
taken into account, and below the KL instability point, where three homoge-
neous states coexist, the BH equations are a prototype nonpotential model for
which the issues of domain growth and dynamical scaling can be explored. In
one spatial dimension there is always coarsening out of the KL unstable re-
gion. Two-dimensional systems, on the other hand, show different dynamical
behavior grossly dominated by vertices where three domain walls meet and
which have no parallel in one-dimensional systems. Coarsening is inhibited
even below the KL instability point by the appearance of three-armed rotating
spirals, each arm associated with a front connecting two homogeneous states.
However, nonpotential domain growth can be triggered by exciting the growth
of only two of the three modes.

In section 2.2 we introduce the theoretical model and discuss several pos-
sible choices for the spatial-dependent diffusion terms. Section 2.3 deals with
the zero-dimensional version of the model. We describe the homogeneous so-
lutions and analyze their linear stability. We also compute both analytical and
numerically the alternating period of the KL instability in a certain range of
parameters, with and without the inclusion of noise terms in the equations.
Section 2.4 is devoted to one-dimensional systems. We focus on a region below
the KL instability in order to study the issues of domain growth and dynam-
ical scaling. Two-dimensional systems are worked out in section 2.5. We in-
vestigate the formation of rotating spiral structures that inhibit coarsening.
We also study domain growth and dynamical scaling in the limit of potential
dynamics, and in the nonpotential regime when only two modes are excited in
the transient dynamics. Moreover, the effect on the dynamics of isotropic and
anisotropic spatial-dependent diffusion terms is studied. Finally, in section
2.6 we end with some conclusions and an outlook.
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2.2 Theoretical Model

We base our study on the following theoretical model:

@tA1 = L1A1 + A1[� � jA1j2 � (� + Æ)jA2j2 � (� � Æ)jA3j2];
@tA2 = L2A2 + A2[� � jA2j2 � (� + Æ)jA3j2 � (� � Æ)jA1j2];
@tA3 = L3A3 + A3[� � jA3j2 � (� + Æ)jA1j2 � (� � Æ)jA2j2]:

(2.1)

Here Li(@
(n); f�g) (i = 1; 2; 3) are linear differential operators, and the Ai’s

are complex amplitudes. If one neglects the spatial dependence, we recover a
model first proposed in the context of fluid dynamics by Busse and Heikes [21],
which is mathematically equivalent to a model of three competing biological
species [112]. In the Busse-Heikes model, A1, A2, and A3 are the amplitudes
of the three selected modes corresponding to three different orientations of
the convection rolls in the rotating cell. The parameter � is proportional to
the difference between the Rayleigh number and the critical Rayleigh num-
ber for convection. We will consider exclusively in this chapter the case of
well-developed convection for which � can be rescaled to 1, i.e. � = 1 hence-
forth. The exact relation of � and Æ to the fluid properties has been given in
[21]. We mention here that � is a parameter related to the temperature gra-
dient and the Taylor number (proportional to the rotation speed 
) in such a
way that it takes a nonzero value in the case of no rotation, 
 = 0, whereas Æ
is related to the Taylor number in such a way that 
 = 0 implies Æ = 0. The
analysis of [21] and [112] shows that, in zero-dimensional systems and for a
certain range of the parameters � and Æ (see section 2.3), there are no stable
homogeneous solutions and the dynamics tends asymptotically to a sequence
of alternations of the three modes (Küppers-Lortz instability). An unwanted
feature of the 0D model is that the alternation time is not constant, but in-
creases with time, contrary to experiments where an approximately constant
period is observed. Busse and Heikes proposed that the addition of small
noise could stabilize the period [54] (we discuss that in section 2.3.3), but an
alternative explanation proposed by Tu and Cross [110] considered the addi-
tion of spatial-dependent terms to the equations without the necessity of the
inclusion of the noise terms.

Two main classes of operators can be considered: isotropic and anisotropic.
Whereas a multiple scale analysis of the convective instability usually leads to
anisotropic terms, the isotropic terms are often justified in the sake of mathe-
matical simplicity. The simplest isotropic terms are the Laplacian operators:

LID
j = r2; j = 1; 2; 3: (2.2)

They have been considered, for instance, in [89] in the context of population
dynamics.

Two types of anisotropic terms have been proposed for similar fluid prob-
lems in the literature: (i) the Newell-Whitehead-Segel (NWS) terms [114] and
(ii) the Gunaratne-Ouyang-Swinney (GOS) terms [115, 116].
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The NWS theory [114] is based on the observation that close to the onset of
patterns, the uniform state is unstable only to perturbations with wavenum-
ber close to q0. Their multiple scale analysis yields spatial-dependent terms
of the form:

LNWS
j =

�
@xj �

i

2q0
@yjyj

�2

; j = 1; 2; 3; (2.3)

where xj = r � n̂j, yj = (r � n̂j) � ẑ, and n̂j is the unit vector normal to the jth
roll. These terms are considered in [110].

The GOS terms were obtained in [115] by using an analysis identical to the
NWS theory to lowest order in perturbation theory and have been reobtained
by the use of renormalization group techniques by Graham [116]. The advan-
tage of these terms is that they exactly preserve the Euclidean symmetries of
the physical system (invariance under translations, rotations, and reflection).
The GOS terms read:

LGOS
j =

�
@xj �

i

2q0
r2

�2

; j = 1; 2; 3: (2.4)

Without altering the essentials of the problem the NWS and GOS terms
can be further simplified leading to second-order directional derivatives along
three directions with a relative orientation of 60Æ [110]:

LAD
j = @xjxj ; j = 1; 2; 3: (2.5)

The terms (2.5) are more tractable numerically and they are the only
anisotropic terms that we will consider. With the inclusion of the isotropic
derivatives (2.2) we will take (2.1) as a mathematical model to study scaling
properties and growth processes in a nonpotential dynamics. In section 2.5.3
we compare the dynamical evolution corresponding to each one of the isotropic
and anisotropic spatial-dependent terms presented before.

Notice that system (2.1) is invariant under the following transformations:

(a) x! x + x0, t! t + t0 (spatio-temporal translation symmetry).

(b) fL1; A1g ! fL2; A2g, fL2; A2g ! fL3; A3g, fL3; A3g ! fL1; A1g (cyclic per-
mutation symmetry).

(c) fLi; Aig� fLj; Ajg, Æ ! �Æ, where i, j are the indices of any two different
amplitudes.

The system (2.1) can be rewritten as

Ai(r; t; �; Æ) = �ÆFBH

ÆA�i
+ Æ � fi(A1; A2; A3); i = 1; 2; 3; (2.6)
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where FBH is a real functional of the fields whose expression is:

FBH[A1; A2; A3] =

Z
dr

�
1

2

3X
i=1

jL1=2
i Aij2 �

3X
i=1

jAij2 +

1

2

3X
i=1

jAij4 + �
3X

i;j=1
i<j

jAij2jAjj2
�
; (2.7)

and the functions ffig3i=1 are given by:

f1 = A1(jA3j2 � jA2j2);
f2 = A2(jA1j2 � jA3j2);
f3 = A3(jA2j2 � jA1j2):

(2.8)

When Æ = 0, the dynamical flow is of the relaxational gradient type (see sec-
tion 1.2), that is, the functional FBH is a Lyapunov functional that decreases
monotonically with time. When Æ 6= 0, however, one cannot find generally
such a functional and we say that the system is nonpotential. However, and
according to the discussion of section 1.2, FBH is a Lyapunov potential if the
following orthogonality condition is satisfied [see Eq. (1.11)]:

Æ

Z
dr

ÆFBH

ÆA� � f(A)� + c.c. = 0; (2.9)

with A = (A1; A2; A3), f = (f1; f2; f3). Without spatial dependence (2.9) is
satisfied for � = 1 as explained in section 2.3.1; in this case the BH dynamics is
a nonrelaxational potential flow (see 1.2). Unfortunately, (2.9) is not trivially
satisfied when � = 1 for any of the spatial-dependent terms mentioned before.

2.3 Zero-dimensional Systems

Before extending the study to higher dimensions, it is useful to understand
the zero-dimensional case (BH model) which can give us some insight into the
dynamical behavior of the system.

Writing Lj = 0, Aj(t) =
p
Rj(t) e

i �j(t), j = 1; 2; 3, we obtain from (2.1) equa-
tions for the modulus square of the amplitudes:

_R1 = 2R1[1�R1 � (1 + �+ Æ)R2 � (1 + �� Æ)R3];

_R2 = 2R2[1�R2 � (1 + �+ Æ)R3 � (1 + �� Æ)R1];

_R3 = 2R3[1�R3 � (1 + �+ Æ)R1 � (1 + �� Æ)R2];

(2.10)

and the phases
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_�1 = 0;

_�2 = 0;

_�3 = 0;

(2.11)

where � = ��1. Therefore, the phases are arbitrary constants fixing the loca-
tion of the rolls. A solution of the form 	(r) =

p
Rj e

iq0(n̂j �r+�j)+c.c. represents
a set of rolls of wavelength 2�=q0 oriented in a direction perpendicular to the
vector n̂j. Hence, in this 0D model one can simply consider the equations for
the real variables fRjg3j=1 instead of the equations for the complex variables
fAjg3j=1. A similar set of equations has been proposed to study population
competition dynamics. For a single biological species, the Verhulst or logistic
model assumes that its population N(t) satisfies the evolution equation:

dN

dt
= rN(1� �N); (2.12)

where r is the reproductive growth rate and � is a coefficient denoting com-
petition amongst the members of the species. If three species are competing
together, it is adequate in some occasions to model this competition by intro-
ducing a Gause-Lotka-Volterra type of equations [112]:

_N1 = rN1(1� �N1 � �N2 � �N3);

_N2 = rN2(1� �N2 � �N3 � �N1);

_N3 = rN3(1� �N3 � �N1 � �N2);

(2.13)

which are the same that the BH equations (2.10) with the identifications r = 2,
� = 1, � = 1 + � + Æ, � = 1 + �� Æ. These equations are the basis of May and
Leonard analysis [112]. We also mention the work of Soward [117] which is
concerned with the study of the nature of the bifurcations mainly, but not
limited to, close to the convective instability for small �, in a slightly more
general model that includes also quadratic nonlinearities in the equations.
In the remaining of the section we will analyze some of the properties of the
homogeneous solutions of the BH equations (2.1). Although our analysis es-
sentially reobtains the results of May and Leonard, we find it convenient to
give it in some detail because, besides obtaining some further analytical ex-
pressions for the time variation of the amplitudes, we are able in some cases
of rewriting the dynamics in terms of a Lyapunov potential. The existence of
this Lyapunov potential allows us to interpret the asymptotic dynamics for
� = 0 as a residual (conservative) Hamiltonian dynamics. For � > 0 we will
use an adiabatic approximation with a time-dependent Hamiltonian. This in-
terpretation will turn out to be very useful in the case that noise terms are
added to the dynamical equations, because the found Lyapunov potential gov-
erns approximately the stationary probability distribution.
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Figure 2.2: Linear stability diagram
of the homogeneous solutions of (2.1).
Inside the region labeled ‘R’, rolls are
stable whereas in the ‘H’ region, the
stable solution is the hexagon. The
‘KL’ region corresponds to the Küppers-
Lortz instability. Other homogeneous
solutions are never stable.
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There exist two kinds of homogeneous solutions that are stable in some
region of the parameter space spanned by � and Æ. These are:

(a) Roll solutions. There are three of these kind, each characterized by one
amplitude equal to 1 and the other two equal to zero, that is

R: Ri = 1; Rj = 0; j 6= i; i = 1; 2; 3: (2.14)

These solutions are linearly stable whenever jÆj < �.

(b) Hexagon solution. This solution is such that the three modes are differ-
ent from zero and take the same value:

H: R1 = R2 = R3 =
1

3 + 2�
: (2.15)

This solution requires � > �3=2 and is linearly stable for � < 0.

There are other stationary solutions of (2.1), but there are never stable.
With all this information, we can construct the stability diagram of the homo-
geneous solutions (2.14) and (2.15) (see Fig. 2.2). The KL instability occurs
when jÆj > � � 1 = � and it can be described in the context of this zero-
dimensional model as a cyclic alternation between the three unstable roll so-
lutions just as shown in Fig. 2.3. In brief: the KL unstable region is charac-
terized by the presence of three unstable fixed points, and a heteroclinic cycle
connecting them.

We will restrict ourselves in this section only to the KL regime, leaving the
study of other regimes (which are trivial in the 0D model) for higher dimen-
sions.

If Æ = 0 the system is purely relaxational and the corresponding stability
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Figure 2.3: Sketch of the KL instability.
The system switches alternatively between
the three unstable fixed points.

diagram can be obtained also by looking at the minima of the potential:

V (A1; A2; A3) = �
3X
i=1

jAij2 + 1

2

3X
i=1

jAij4 + (1 + �)
3X

i;j=1
i<j

jAij2jAjj2

= �(R1 +R2 +R3) +
1

2
(R2

1 +R2
2 +R2

3) + (1 + �)(R1R2 +R2R3 +R1R3): (2.16)

Note that V is just the functional FBH given by Eq. (2.7) in zero spatial di-
mensions. For the roll and hexagon solutions, the potential takes the values:

VR = �1

2
Roll solution; (2.17)

VH =
�3

6 + 4�
Hexagon solution: (2.18)

The study of the potential (for Æ = 0) shows that the rolls (hexagons) are
maxima (minima) of the potential for � < 0 and minima (maxima) for � > 0.
Also, the potential for the roll solutions is smaller that the potential for the
other solutions whenever � > 0, indicating that the rolls are the most stable
(and indeed the only stable ones) solutions in this case. Unfortunately, this
simple criterion does not have an equivalent in the nonpotential case, Æ 6= 0,
for which one has to perform the full linear stability analysis.

2.3.1 The Case � = 0

When Æ = 0, it is clear that the function V is a Lyapunov function. What is
not evident is the fact that V acts also as a potential in the case � = 0. This is
seen by writing the orthogonality condition (2.9) in zero spatial dimensions,
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which amounts to:

Æ � � = 0: (2.19)

Hence, in the case � = 0, V acts as a Lyapunov and the dynamics is driven by
a nonrelaxational potential flow and, whereas the dynamics still leads to the
surface of minima of the Lyapunov function, there is a residual motion [given
by the rhs of Eq. (2.6)] in this surface for which dV=dt = 0. In other words: the
relaxational terms in the dynamics make the system evolve towards the de-
generate minimum of the potential (which for � = 0 occurs at R1+R2+R3 = 1).
The residual motion is governed by the nonpotential part that is proportional
to Æ and this residual motion disappears for Æ = 0, the relaxational gradient
case.

According to this reduction of the dynamics as a residual motion in the
surface of minima of the potential V , strictly valid only for � = 0, it turns out
that it is possible to solve essentially the equations of motion. By “essentially”
we mean that after a transient time in which the system is driven to the min-
ima of V , the residual motion is a conservative one in which it is possible to
define a Hamiltonian-like function that allows one to find explicit expressions
for the time variation of the dynamical variables. Let us define the variable

x(t) = R1(t) +R2(t) +R3(t): (2.20)

It is straightforward to see that x(t) satisfies the evolution equation:

_x = 2x(1� x)� 4�y; (2.21)

where

y(t) = R1R2 +R2R3 +R3R1: (2.22)

When � = 0, the equation for x(t) is closed and its solution is

x(t) =
1�

1

x0
� 1

�
e�2t + 1

: (2.23)

Here x0 � x(t = 0). Eq. (2.23) is such that limt!1 x(t) = 1 regardless of
the initial condition. In practice, and due to the exponential decay in the
denominator of (2.23), after a transient time t = O(1), x(t) already takes its
asymptotic value x(t) = 1. We can then eliminate from the evolution equations
one of the three variables, taking, for instance, R1(t) = 1 � R2(t) � R3(t). In
this way, the original two-variable problem is reduced to a residual dynamics
in a two-variable subspace:

_R2 = 2ÆR2(1�R2 � 2R3);

_R3 = �2ÆR3(1� 2R2 � R3):
(2.24)
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These are Hamilton’s equations:

_R2 = 2Æ
ÆH
ÆR3

;

_R3 = �2Æ ÆH
ÆR2

;

(2.25)

corresponding to the Hamiltonian:

H(R2; R3) = R2R3(1�R2 � R3): (2.26)

Since time does not appear explicitly in (2.26), the Hamiltonian H(t) = E is
a constant of motion (which will be called the “energy”) in the asymptotic dy-
namics for which the Hamiltonian description is valid. Although the Hamilto-
nian dynamics is valid only after a transient time, the value of E depends only
on initial conditions at t = 0. The dependence of E on the initial conditions
can be found by introducing the variable Ĥ:

Ĥ = R1R2R3; (2.27)

which, in the asymptotic limit (t ! 1) is equivalent to H. It is easy to show
that for arbitrary values of � and Æ, Ĥ satisfies the following evolution equa-
tion:

Ĥ�1dĤ
dt

= 6� (6 + 4�)x: (2.28)

One can reduce the original dynamical problem to variables (x; y;Ĥ) but the
equation for _y turns out to be too complicated (see [117]). Now, substituting
the solution for x(t) valid in the � = 0 case [Eq. (2.23)], we get

Ĥ(t) = Ĥ0

�
(1� x0)e

�2t + 1
��3

; (2.29)

where Ĥ0 = Ĥ(t = 0). The asymptotic value for H(t) is

E = lim
t!1

H(t) = lim
t!1

Ĥ(t) = Ĥ0x
�3
0 =

R1(0)R2(0)R3(0)�
R1(0) +R2(0) +R3(0)

�3 : (2.30)

Again, this asymptotic value is reached after a transient time of order 1. The
previous expression suggests to define the time-dependent variable

E(t) =
Ĥ
x3

=
R1R2R3

(R1 +R2 +R3)3
; (2.31)

whose evolution equation (again, for arbitrary �, Æ) is

dE

dt
= �4�

�
x� 3y

x

�
E � �4�f(t)E: (2.32)
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Figure 2.4: (Left) Hamiltonian orbits in the 3D space fR1; R2; R3g corresponding to two
different initial conditions. After a transient time of order 1, the trajectory is a periodic orbit
located on the plane R1 + R2 + R3 = 1. (Right) Time evolution of the amplitudes. The lines
are the theoretical predictions that come from Eqs. (2.40a–c). Parameter values are � = 0,
Æ = 1:3.

Therefore, in the case � = 0, E(t) = E is a constant of motion that coincides, in
the asymptotic limit when x = 1, with the numerical value of the Hamiltonian
H. According to their definition, E(t) is a bounded function 0 6 E(t) 6 1=27,
and f(t) > 0 for fR1; R2; R3g > 0.

The problem in the case � = 0 can now be given an explicit solution [112].
After a transient time (or order 1), the motion occurs on the plane R1 + R2 +
R3 = 1 (see Fig. 2.4). The motion is periodic because it corresponds to a Hamil-
tonian orbit with a fixed energy. The exact shape of the trajectory depends on
the value of the energy E which, in turn, depends on initial conditions. More
interestingly, the period of the orbit can also be computed. We can solve for
instance for R3 by eliminating R2 from the expression (2.26) for the energy:

R2 =
1

2

 
1� R3 �

r
(1�R3)2 � 4E

R3

!
: (2.33)

We obtain a closed equation for R3:

_R3 = �2Æ
q
R2

3(1� R3)2 � 4ER3: (2.34)

Let b and c the return points, i.e., the solutions of

R3(1� R3)
2 � 4E = 0; (2.35)

lying in the interval (0; 1)1. The three roots fa; b; cg of the above three-degree
equation are real and two of them (the return points b, c) lie in the interval

1The case R3 = 0 necessarily leads to E = 0 and the dynamics stops.
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(0; 1). The explicit expression for the roots is:

a =
2

3

�
1 + cos

�

3

�
; (2.36a)

b =
2

3

�
1 + cos

�
� � 2�

3

��
; (2.36b)

c =
2

3

�
1 + cos

�
� + 2�

3

��
; (2.36c)

where � = arccos(54E � 1). Integration of Eq. (2.34) yields the equation of
motion for R3(t): Z R3(t)

c

dxp
x(x� a)(x� b)(x� c)

= 2Æ

Z t

t0

dt0; (2.37)

where we have chosen the initial time t0 to correspond to the minimum value
when R3(t) = c. The integral in the left hand side can be expressed in terms
of the Jacobi elliptic function sn[xjq], to yield:

R3(t) =
b c

b + (c� b) sn2
�
Æ
p
b(a� c) (t� t0) j q

�; q =
a(b� c)

b(a� c)
: (2.38)

The period of the orbit T can be expressed in terms of the complete elliptic
function of the first kind K(q):

T =
2

Æ
p
b(a� c)

K(q); (2.39)

and the equation for R3(t) can be written as:

R3(t) =
b c

b + (c� b) sn2
�
2K(q)T�1(t� t0) j q

� : (2.40a)

Finally, the evolution equations for the other variables are:

R1(t) = R3(t� T=3); (2.40b)

R2(t) = R3(t� 2T=3): (2.40c)

Summarizing, the behavior of the dynamical system in the case � = 0 can
be described as follows: after a transient time (or order 1) the three variables
fRjg3j=1 vary periodically in time on the plane R1 + R2 + R3 = 1. When R1

decreases, R2 increases, etc. The period of the orbit depends only on the initial
conditions through a constant of motion E. The explicit expression for the
period, T = T (E) [Eq. (2.39)], shows that the period diverges logarithmically
when E tends to zero, namely

T (E) = � 3

2Æ
logE � �1 +O(E)

�
; (2.41)
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and the amplitude of the oscillations � � b � c depends also on the constant
E. When E tends to 0 the amplitude approaches 1:

� = (1� 2E1=2)� �1 +O(E)
�
: (2.42)

All these relations have been confirmed by a numerical integration of the BH
equations. In Fig. 2.4 we plot the time evolution of the amplitudes in the
case � = 0, Æ = 1:3. In this figure we can observe that, after an initial tran-
sient time, there is a periodic motion (characteristic of the KL instability) well
described by the previous analytical expressions.

2.3.2 The Case � > 0

Once we have understood the case � = 0, we now turn to � > 0. In this case,
the function V is no longer a Lyapunov potential and we can not restrict the
motion to the manifold of minima of V . However, since the main features of
the KL dynamics are already present in the case � = 0, one would like to
perform some kind of perturbative analysis valid for small � in order to char-
acterize the KL instability. We exploit these ideas to develop some heuristic
arguments that will allow us to make some quantitative predictions about the
evolution of the system.

According to Eq. (2.32), and since the quantity f(t) is always positive, one
can infer that E(t) decreases with time in a characteristic time scale of order
��1. If � is small, E(t) decreases very slowly and we can extend the picture of
the previous section by using and adiabatic approximation. We assume, then,
that the dynamics for � > 0 can be described by a Hamiltonian dynamics with
an energy that slowly decreases with time. Hence, in reducing the energy, the
system changes (similarly to a damped harmonic oscillator) spiraling from a
periodic orbit to another. Assuming this picture of a time-dependent energy
E(t), the main features of the case � = 0 can now be extended. This model has
several predictions:

(P1) After a transient time of order 1, The motion occurs near the plane R1 +
R2 +R3 = 1. This is checked in the simulations as we can see in Fig. 2.5.

(P2) The period of the orbits is now a function of time. Since the energy de-
creases towards zero, it follows from previous arguments that the period
diverges with time. Moreover, it is possible to give an approximate ex-
pression for the time dependence of the period. Integration of Eq. (2.32)
leads to:

E(t) = E(0) e�4�
R t
t0
f(t0)dt0 � E(t0) e

�4�(t�t0); (2.43)

where we have approximated f(t) by its asymptotic value f(t) = 1. Once
we have the time evolution of the energy, we can compute the time de-
pendence of the period by using T (t) = T

�
E(t)

�
as given by (2.39). For



2.3 Zero-dimensional Systems 57

0.0

0.5

1.0

0.0

0.5

1.0

0.5

1.0

R1R2

R3

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

t

R
1(t

), 
R

2(t
), 

R
3(t

)

Figure 2.5: (Left) three dimensional trajectory in the 3D space fR1; R2; R3g in the KL insta-
bility region, and (right) time evolution of the amplitudes; the thick line corresponds two the
sum of the three amplitudes which is approximately equal to 1. Notice that the time period
between consecutive alternations of the modes increases with time. Parameter values are
� = 0:1 and Æ = 1:3.

large times, the energy is small and the asymptotic result (2.41) leads
to:

T (t) = T0 +
6�

Æ
t: (2.44)

This shows that the period increases linearly with time, in agreement
with the results of [112] in which the residence period was shown to
behave also linearly with time (although with a different prefactor). In
order to check this relation, we have performed a numerical integration
of Eqs. (2.10) and computed the period T , defined as the time it takes a
given amplitude to reach a reference level (taken arbitrarily as Rj = 0:5),
as a function of time. The results for Æ = f1:3; 3g and � = f0:01; 0:1g,
plotted in Fig. 2.6, show that there is a perfect agreement between the
theoretical expression and the numerical results.

(P3) The amplitude of the oscillations, as given by the return points �(t) =
b(t) � c(t), is now a function of time. Using expression (2.42) with an
energy that decreases with time as in (2.43), we obtain that the ampli-
tude of the oscillations increases with time [see Fig. 2.5], and that it
approaches 1 in a time of order t � ��1. More specifically, we have:

1��(t) = (1��0) e
�2�t: (2.45)

In summary, for the case � > 0, the period of the orbits, which is a function
of the energy, increases linearly with time and the amplitude of the oscilla-
tions approaches 1. We characterize in this way the increase of the period
between successive alternation of the dominating modes [see Fig. 2.5] as an
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Figure 2.6: Time evolution of the
period, defined as the time between
a given amplitude crosses the refer-
ence level Rj = 0:5, for several val-
ues of � and Æ. We also plot lines
with slopes 6�=Æ as predicted by Eq.
(2.44).
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effect of the Hamiltonian dynamics with a slowly decreasing energy. This pre-
diction of the BH model for the KL instability is unphysical, since the experi-
mental results do not show such an increase of the period. Busse and Heikes
were fully aware of this problem and suggested that noise terms (“small am-
plitude disturbances”), that are present at all times, prevent the amplitudes
from decaying to arbitrary small levels and a motion which is essentially peri-
odic but with a fluctuating period is established. In the next section we study
the effect of noise in the dynamical equations.

2.3.3 Busse-Heikes Model in the Presence of Noise

In order to account for the effect of the fluctuations, we modify the BH equa-
tions by the inclusion of noise terms:

_A1 = A1[1� jA1j2 � (1 + �+ Æ)jA2j2 � (1 + �� Æ)jA3j2] + �1(t);

_A2 = A2[1� jA2j2 � (1 + �+ Æ)jA3j2 � (1 + �� Æ)jA1j2] + �2(t);

_A3 = A3[1� jA3j2 � (1 + �+ Æ)jA1j2 � (1 + �� Æ)jA2j2] + �3(t):

(2.46)

We take the simplest case in which the �i(t) are complex white-noise processes
with correlations: 


�i(t)�
�
j (t

0)
�
= 2"Æ(t� t0)Æij: (2.47)

As mentioned before, and in the case of parameter values lying inside the
KL instability region, noise prevents the system from spending an increasing
amount of time near any of the (unstable) fixed points. The mechanism for
this is that fluctuations are amplified when the trajectory comes close to one of
the (unstable) fixed points of the dynamics and the trajectory is then repelled
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Figure 2.7: Time evolution of
the amplitudes corresponding to the
Busse-Heikes model with noise [Eqs.
(2.46)]. In this case the oscillating pe-
riod fluctuates around a mean value.
Parameter values are Æ = 1:32, � =
0:10, " = 10�6.
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towards another fixed point. Hence, a fluctuating, but periodic on average,
trajectory is sustained by noise. Within the general picture developed in the
previous sections, the main role of noise for � > 0 is that of preventing E(t)
from decaying to zero. This can be understood in the following qualitative
terms: when noise is absent, the dynamics brings the system to the surface
of minima of V , where the dissipative terms act by decreasing the energy in
a time scale of order ��1 [see Eq. (2.43)]. The inclusion of noise has the effect
of counteracting this energy decrease that occurs in the surface of minima
of V by “injecting energy” into the system. As a consequence, E(t) no longer
decays to zero but it stabilizes around a mean value hEi. By stabilizing the
orbit around that one corresponding to the mean value hEi, fluctuations in
the residual motion stabilize the mean period to a finite value. In order to
check this picture, we have performed numerical simulations of Eqs. (2.46)
for small noise amplitude ", using a stochastic Runge-Kutta algorithm [54].
The numerical simulations (see Fig. 2.7), show indeed that the trajectories
have a well-defined average period hT i.

From a more quantitative point of view, we can, according to the previous
picture, compute the mean period hT i, which in the purely Hamiltonian case
was a function of E, by using the same function applied to the mean value of
E, i.e. hT i = T (hEi). This relation has been checked in the numerical simu-
lations. In Fig. 2.8 we plot the mean period hT i versus the period calculated
from the mean energy, hEi, which has also been evaluated numerically. From
this figure it appears that our qualitative argument of a trajectory stabilized
around the Hamiltonian orbit, corresponding to the average energy, is well
supported by the numerical simulations.

In order to proceed further, we consider the probability distribution for
the amplitude variables, P (A1; A2; A3; t). According to well-known theory, this
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Figure 2.8: Average value of the
period as computed in the numeri-
cal simulations of the Busse-Heikes
model in the presence of noise plotted
versus the theoretical value that fol-
lows from application of the relation
T (hEi), where hEi has been obtained
numerically. Same symbols meaning
than in Fig. 2.6.
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distribution follows a Fokker-Planck equation. In the case of a relaxational
nongradient dynamics with a potential V , (the case for � = 0 and Æ 6= 0) and
when the residual terms (those proportional to Æ) satisfy the orthogonality
condition and are divergence free:

3X
j=1

@fj
@Aj

= 0; (2.48)

a condition satisfied in the case of the BH equations, it is possible to show
that the stationary probability distribution for the fAjg3j=1 variables is given
by [54]:

Pst(A1; A2; A3) = Z�1 exp
��V (A1; A2; A3)="

�
: (2.49)

For � > 0 this is no longer true but we expect that for small � a similar
relation would be valid if we use a potential function � that differs from V
in terms that vanish for vanishing �. Using this probability distribution, one
can compute the average value of the variable E as:

hEi = Z�1
Z

dA1 dA
�
1 dA2 dA

�
2 dA3 dA

�
3 E exp(��="): (2.50)

We take the crude approximation � = V and, after a change of variables
to amplitude and phase, the mean value of the energy can then be computed
as:

hEi =

Z 1

0

dR1

Z 1

0

dR2

Z 1

0

dR3E exp[�V="]Z 1

0

dR1

Z 1

0

dR2

Z 1

0

dR3 exp[�V="]
; (2.51)
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where V and E are given in terms of the variables fRjg3j=1 in Eqs. (2.16) and
(2.31) respectively. In the case � = 0 (for which the above expression is exact)
we obtain the value hEi = 1=60 independent of " and T = T (hEi = 1=60) �
6:4467=Æ.

In the case � > 0, the above integral can be performed by means of a
steepest descent calculation, valid in the limit " ! 0, where it yields the
asymptotic behavior hEi ! ("=�)2 (see appendix A). The mean period can now
be computed, in this limit of small ", using (2.41). The result is that the period,
as a function of the system parameters fÆ; �; "g, behaves as:

T ("; �; Æ) � 3

Æ
log(�="); (2.52)

a relation that is expected to hold in the limit of small " and for small values of
�. In Fig. 2.9 we show that there is indeed a linear relation between the period
computed in the numerical simulations and Æ�1 log(�="), as predicted by the
above formula, although the exact prefactor 3 is not reproduced. We find it
remarkable that, in view of the simplifications involved in our treatment, this
linear relation holds for a large range of values for the parameters �, Æ and ".

Figure 2.9: Average period, hT i,
plotted as a function of Æ�1 log(�=")
in order to check the predicted lin-
ear relation [Eq. (2.52)]. The straight
line is the best fit and has a slope of
1:734. Same symbols meaning than
in Fig. 2.6, and values of " ranging
from " = 10�2 to " = 10�7.
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2.4 One-dimensional Systems

The study of the 1D BH model represents a first step towards understanding
the problem of domain growth and dynamical scaling in nonrelaxational sys-
tems, which by and large have not been considered. We focus on the region
below the KL instability (region ‘R’ of Fig. 2.2), where the roll solutions are
stable, and the dynamics is nonpotential except for Æ = 0.
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For simplicity, we only consider the case of real variables. We write the 1D
BH model as:

@tA1 = @xxA1 + A1[1� A2
1 � (� + Æ)A2

2 � (� � Æ)A2
3];

@tA2 = @xxA2 + A2[1� A2
2 � (� + Æ)A2

3 � (� � Æ)A2
1];

@tA3 = @xxA3 + A3[1� A2
3 � (� + Æ)A2

1 � (� � Æ)A2
2]:

(2.53)

A similar set of equations is introduced in reference [89] for some particular
values of the parameters � and Æ in the context of population dynamics [Eqs.
(1.86)]. In their case A2

i represents the population of a biological species. From
the point of view of Statistical Mechanics, system (2.53) describes a general
model of three competing, nonconserved real order parameters with short-
range interactions.

2.4.1 Front Solutions

2.4.1.a Isolated fronts

In the context of the present study, fronts or domain walls are defects that
connect two homogeneous solutions. We observe numerically that the stable
kink solutions are such that one of the three amplitudes, say Ak, satisfying the
boundary conditions Ak(x ! �1) = 0 is zero everywhere. In order to study
the dynamics of the nonpotential kinks, we first consider the kinks associated
with the potential problem (stationary solutions of (2.53) with Æ = 0) and then
we treat the nonpotential terms as a perturbation. The two nonvanishing
stationary amplitudes Ai and Aj are, for Æ = 0, solutions of

@xxA
0
i = �A0

i + (A0
i )

3 + � A0
i (A

0
j)

2;

@xxA
0
j = �A0

j + (A0
j)

3 + � A0
j(A

0
i )

2;
(2.54)

with boundary conditions A0
i (�1) = A0

j(+1) = 0 and A0
i (+1) = A0

j(�1) = 1.
The system (2.54) may be considered to represent the two-dimensional mo-

tion of a Newtonian particle of unit mass (x ! t, A0
i ! X, A0

j ! Y ) under
the action of a force with potential function V (X; Y ) = 1

2
(X2 + Y 2) � 1

4
(X4 +

Y 4) � 1
2
�X2Y 2. This function has two maxima at m0 = fA0

i = 1; A0
j = 0g and

m1 = fA0
i = 0; A0

j = 1g. It is clear that there exists a unique trajectory (al-
lowed by the dynamics) along which a particle located in m0 (m1) can reach
m1 (m0). The kink profile corresponds to the variation in time of the particle
coordinates

�
X(t); Y (t)

�
when it moves between the two maxima [10].

An explicit analytical solution can be found in two particular cases [118].
First, when 0 < � � 1� 1, we have

A0
i (x) = r(x)

h
1 + exp

�
2
p
� � 1(x� x0)

�i�1=2
;

A0
j(x) = r(x) ex

h
1 + exp

�
2
p
� � 1(x� x0)

�i�1=2
;

(2.55)
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with r(x) = 1 + (� � 1)R(x), R(x) = O(1). Secondly, when � = 3 it is possible to
obtain exact analytical solutions:

A0
i (x) =

1

1 + e�
p
2(x�x0)

=
1

2

�
1� tanh

�
x� x0p

2

��
;

A0
j(x) =

1

1 + e�
p
2(x�x0)

=
1

2

�
1� tanh

�
x� x0p

2

��
:

(2.56)

In both cases x0 is arbitrary but fixed, reflecting the translational invariance
of the system. From these solutions it is clear that the spatial scale over which
A0
i and A0

j vary is of order 1=
p
� � 1.

The three roll solutions (2.14) are equivalent and they yield the same value
for the Lyapunov functional (2.7). Therefore, we expect isolated kinks not to
move in the potential problem (Æ = 0). However, when nonpotential terms
are present, there is a symmetry breaking and an isolated kink moves at a
constant velocity v(�; Æ). This can be found by using standard perturbation
techniques as done in section 1.3.2. Let us assume Æ to be small, say of order
", and look for a solution of Eqs. (2.53) [with Ak(x) = 0] of the form

Ai(x) = A0
i (x� s(t)) + "A1

i (x� s(t)) +O("2);

Aj(x) = A0
j(x� s(t)) + "A1

j(x� s(t)) +O("2);
(2.57)

where A0
i (x) and A0

j(x) are solutions of (2.54). Substituting into (2.53) and
equating terms of equal powers of ", we find, to order O("0):

@2xA
0
i + A0

i � (A0
i )

3 � � A0
i (A

0
j)

2 = 0;

@2xA
0
j + A0

j � (A0
j)

3 � � A0
j(A

0
i )

2 = 0;
(2.58)

and to order O("1):

L� = �0; (2.59)

where

L =

�
@xx + 1� � [(A0

i )
2 + (A0

j)
2] �2�A0

iA
0
j

�2�A0
iA

0
j @xx + 1� � [(A0

i )
2 + (A0

j)
2]

�
;

� =

�
A1
i

A1
j

�
; �0 =

�
Æ"�1(A0

i )
2A0

j � A0
i @ts

�Æ"�1A0
j(A

0
i )

2 � A0
j@ts

�
:

The solvability condition for the existence of a solution
�
A1
i (x); A

1
j(x)

�
reads

(�y; �0) = 0; (2.60)

where (�; �) is a scalar product in L2(R) defined by (f; g) =
R1
�1dxf(x)�g(x)

and �y belongs to the null space of the auto-adjoint operator L. Because of
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the translational invariance, L has a zero eigenvalue so that its kernel is not
empty. The associated eigenvector is

�
y =

�
@xA

0
i

@xA
0
j

�
: (2.61)

This is immediately seen taking, for example, the derivative of (2.58) with
respect to x. Eq. (2.60) can now be explicitly evaluated. From this equation,
the solitary kink velocity v(�; Æ) � @ts in the nonpotential case is obtained to
leading order:

v(�; Æ) = Æ

Z 1

�1
dxA0

iA
0
j (A

0
j @xA

0
i � A0

i @xA
0
j)Z 1

�1
dx
�
(@xA

0
i )

2 + (@xA
0
j)

2
� +O(Æ2) � Æ � h(�) +O(Æ2): (2.62)

Hence, in the nonpotential case, the kink moves despite connecting states
associated with the same value of the Lyapunov potential of the equilibrium
problem. For the particular case of � = 3 for which an analytical result is
available for the kink profile [Eqs. (2.56)], an explicit result is obtained for
the solitary kink velocity, namely, v(3; Æ) = Æ

p
2=4.

The expression (2.62) gives not only the magnitude of the velocity but
also the direction of motion, which is related to the sign of v. First, we
note that the velocity is to leading order proportional to Æ, so the direction
of the motion depends upon the sign of Æ. To illustrate how (2.62) determines
the direction, let us consider for example a kink with boundary conditions:
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Figure 2.10: Kinds of fronts and their direc-
tion of motion for Æ > 0. The remaining am-
plitude for each kink is understood to be zero
across the interface. For Æ < 0 the picture is
the same but with the arrows interchanged.

Figure 2.11: Solitary kink velocity as a
function of the nonpotential parameter Æ for
� = 3:5. The straight line corresponds to
the theoretical perturbative approach (2.62)
whereas the points come from numerical
simulation.
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Ai(�1) = Aj(+1) = 0 and Ai(+1) = Aj(�1) = 1; A0
i (x) and A0

j(x) are such
that @xA0

i > 0 and @xA
0
j < 0. In this case the numerator of (2.62) is positive

and v has the sign of Æ. A positive (negative) value of v corresponds to a kink
moving to the right (left). In Fig. 2.10 we show a classification of the six possi-
ble types of isolated kinks and their direction of motion. Three of them move
in one direction and the other three in opposite direction.

We have checked numerically the domain of validity of the perturbative
result (2.62). To this end we may either use the analytical result of the kink
profiles A0

i;j for � = 3 or, more generally, the kink profiles A0
i;j obtained numer-

ically. For a value of � = 3:5, we see that the perturbative result to first order
in Æ [Eq. (2.62)] turns out to be in good agreement with the numerical results
approximately for values Æ . 1:5 (see Fig. 2.11). Of course this upper limit of
validity depends on � in such a way that it gets bigger as � is larger. Above
this limit the linear relation between v and Æ is no longer valid and one needs
to compute further corrections in terms of successive powers of Æ.

2.4.1.b Multifront configurations

To study transient dynamics and domain growth we consider random initial
conditions of small amplitude around the unstable solution A1 = A2 = A3 = 0.
In this situation a multifront pattern emerges rather than a solitary kink. In
order to study dynamical scaling, we are interested in the late stage of this
dynamics, once well-defined domains have been formed.

When Æ is different from zero, the long stage dynamics can be explained
in terms of moving fronts which annihilate each other. Kink annihilation in-
duces domain coarsening, leading to a final state with a homogeneous roll
solution filling up the whole system. There are two very distinct competing
physical phenomena that affect kink dynamics. On the one hand, there is kink
interaction due to short-range attractive forces. This is the only effect that
takes place in the potential dynamics limit (Æ = 0), and it leads to a growth
law logarithmic with time (see section 1.4.1.b). On the other hand, we have
the kink motion driven by nonpotential effects. In this case, we do not expect
the growth law to be logarithmic, at least in the regime where the nonpoten-
tial effects (the strength of which is measured by Æ) are important. In Fig.
2.12 we show some snapshots corresponding to a typical run of the temporal
evolution of the system (we use periodic boundary conditions). The first snap-
shot corresponds to an early stage during which domains are forming. Once
formed, kinks move in such a way that annihilation of counter-propagating
adjacent kinks leads to coarsening. Eventually, as corresponding to the last
snapshot, the system may be in a state with a group of kinks moving all in
the same direction. These will interact among them (with a interaction force
that varies logarithmically with the interkink distance) until extinction.

We have performed a perturbation analysis of domain growth in the sim-
plest example of a single domain bounded by two moving domain walls. A
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Figure 2.12: Snapshots of the time evolution of system (2.53) out of the KL instability region.
In the upper part, the sense of motion of the various kinks is indicated. The last snapshot in
the bottom part corresponds to a group of kinks moving to the left. Eventually they will all
disappear leaving a roll solution filling up the whole system. Patterns at times (from top to
bottom): 5, 125, 250, 1000, 1250, and 2500. Parameter values are: � = 3:5, Æ = 2.

differential equation for the domain size L(t) can be obtained in the general
case (see appendix B). For � = 3 it adopts the simple form:

@tL(t) = 2v(3; Æ)� 24
p
2 e�

p
2L(t) = � Æp

2
� 24

p
2 e�

p
2L(t); (2.63)

where v(3; Æ) is the solitary kink velocity. This expression is obtained in the
“dilute-defect gas approximation”, that is, when the width of the fronts is
much smaller than the distance between them. The first term in the right
hand side of (2.63) can be either negative or positive and represents the con-
tribution to the variation of the domain size owing to nonpotential effects. The
second term is related to the interacting force between the kinks and it is al-
ways negative (attractive force) so that it always tends to shrink the domain.
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Figure 2.13: (a) Snapshots of the time evolution of system (2.53) inside the KL instability
region. Patterns at times (from top to bottom): 12, 52, 92, 132, 172, and (b) amplitudes vs. time
in a fixed point of space (taken at the center of the system). Parameter values are: � = 2,
Æ = 1:5.
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If both terms are negative, the kinks will annihilate each other independent
of the initial domain size. Otherwise, when the first term is positive, the two
effects act in opposite directions. In fact, given an initial size of the domain
L0, it is possible to find a value Æ = Æc for which the domain neither shrinks
nor grows; in this case, the initial domain would not evolve in time being a
stationary solution. For values Æ > Æc the domain would get wider whereas
for Æ < Æc it would shrink. Note that in the Æ = 0 case (potential regime),
the isolated domain always collapses, but this can be stopped with a suitable
strength of the nonpotential terms. Furthermore, given a fixed value of Æ, if
L0 is large enough, the dominant term responsible of the kink motion is the
one associated with v(�; Æ). In this case the fronts move at a constant velocity
leading to a variation of the domain size linear with time. On the other hand,
if L0 is small enough, kink interaction will be the dominant effect and the
single domain size will collapse logarithmically with time. This picture of the
size dynamics of a single domain also explains basically what happens when
more domains (and a nonvanishing third amplitude) coexist. It gives a useful
understanding of the characteristic growth laws obtained from a statistical
analysis in the next section.

Inside the KL instability region, the instability manifests itself in the bulk
of domains as an alternation between the three amplitudes. In addition, there
is a nonpotential front motion. The system switches to a persistent dynamical
state so that a stationary state is never reached. In Fig. 2.13 we show typical
configurations of the system inside the KL instability region as well as the
time evolution of the amplitudes in a fixed point of space. Notice that, in the
region where the rolls are stable, the system also oscillates cyclically at each
point, but the alternation is only due to front motion.

2.4.2 Domain Growth and Dynamical Scaling

In this section we focus on the scaling properties of the system (2.53) in a late
stage of the dynamics, namely when well-defined domains have formed. The
system under study here gives us the opportunity of answering the question
of whether a nonpotential dynamics satisfies dynamical scaling. To check
numerically the validity of the scaling hypothesis, we have integrated the
system of equations (2.53) by using a finite difference method for both, the
spatial and temporal derivatives. In the simulations we have taken a constant
value for �, namely � = 3:5, and we have varied Æ from Æ = 0 (potential case)
to Æ = 0:1 (a value below the KL instability threshold). We have used periodic
boundary conditions and have averaged our results over 100–500 runs. To
study domain structure, we consider the correlation function of one of the
three amplitudes, which is defined as:

Ci(x; t) =


Ai(x + x0; t)Ai(x

0; t)
�

i.c.; (2.64)

where angular brackets indicate an average over initial conditions (“runs”).
Note that, for symmetry arguments, C1 = C2 = C3 � C. We use the correlation
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Figure 2.14: Time evolution of the char-
acteristic domain size for the 1D BH model
in potential case Æ = 0. The system size
is S = 1000. The straight line is a linear
regression fit of the displayed points.

Figure 2.15: Scaling function for the 1D
BH model in the potential case Æ = 0. The
plot has been made by over plotting C(x; ti)
vs x=L(ti) for several times from t = 200 up
to t = 5000.

function better than the structure factor because of the large fluctuations of
the structure factor at small wave numbers. A typical length scale L(t) associ-
ated with the average domain size can be defined in several ways. Specifically,
we have determined it by computing the value of x for which C(x; t) is half its
value at the origin at time t, that is C(L(t); t) = 1

2
C(0; t). The calculation has

been performed by fitting the four points of C(x; t) closest to C(0; t) to a cubic
polynomial. Another typical length, L1(t) can be evaluated directly as the sys-
tem size divided by the number of kinks. We have verified that the quotient
L1(t)=L(t) remains nearly constant, as expected, when a single characteristic
length dominates the problem.

2.4.2.a Growth law

We consider first the potential case Æ = 0: in Fig. 2.14 we show that the do-
main size follows the expected logarithmic behavior. The attractive interac-
tion among the kinks leads to a very long transient before the system reaches
its final state which corresponds to one roll solution filling up the whole sys-
tem.

In the nonpotential case, the averaged domain size L(t) is shown in
Fig. 2.16 for a system of size S = 500 and Æ = 10�3. For the earliest times,
when the kinks are very close to each other, and according to the discussion
of section 2.4.1.b, we expect the interaction terms to be the dominant ones
(as long as Æ is small enough). This leads to an initial logarithmic growth of
L(t). Due to coarsening the characteristic domain size becomes larger and the
domain wall interaction becomes weaker as the time increases. For longer
times the nonpotential effects dominate with respect to wall interaction. In



70 Domain Growth in the Busse-Heikes Model for...

4.5 5.9 7.3
5

6

7

8

9

10

11

12

L(t)

log t t  (×10−3)
5 10 15 201.5

R(t) ˜ log t

crossover

R(t) ˜ t

Figure 2.16: Time evolution of the characteristic domain size for Æ = 0:001 and S = 1000.
The initial logarithmic growth law becomes linear after a crossover. For the largest times,
finite size effects appear.

this regime we can consider each domain wall to move at a constant velocity.
We obtain for this stage a growth consistent with a linear profile with time.
Between these two dominant behaviors there exists a crossover for which the
weights of both effects (interaction and nonpotential) in driving the domain
wall motion are of the same order. Finally, at very late times finite size ef-
fects come into play: the domain size saturates to a constant value and the
number of domain walls is too small to generate good statistics. When Æ is
large enough the initial kink annihilation is so fast that the initial logarith-
mic growth and the crossover stage can hardly be observed in the numerical
integration. In this case of large nonpotential effects, a linear growth law is
observed from the shortest times as it is shown in Fig. 2.17 for a very large
system of size S = 100000. For smaller systems finite size effects occur at rel-
atively early times. For example saturation effects appear for t & 200 for a
system of size S = 500. The bigger Æ, the sooner finite size effects appear.

In the regime for which the nonpotential effects are the dominant ones,
we can give a simple explanation of the linear growth law observed based on
mean field theory arguments. Statistically speaking, there will be the same
number of kinks moving to the right and to the left. As a matter of fact,
in an appropriate reference frame, the system can be seen as composed of
motionless kinks (type 1) and kinks moving at a velocity of 2v in one fixed
direction (type 2) . If we call N1(t) and N2(t) the average number of kinks of
both types at time t, the number of kinks of, say type 1, at time t+ dt will be:

N1(t+ dt) = N1(t)�N1(t) 2v dt� N2(t)

S
; (2.65)
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Figure 2.17: Time evolution of the characteristic domain size for the 1D BH model in the
nonpotential case for two distributions of the initial conditions with different width of the ran-
dom variable �N = NR � NL which measures the difference between right and left moving
interfaces. The inset shows the corresponding histograms in terms of the relative frequency
of �N . The initial conditions were generated as explained in section 2.4.2.a. The growth
exponents obtained numerically are close to 1:0 and 0:7 for the solid and dashed curves re-
spectively. Parameter values are � = 3:5 and Æ = 0:1; the system size is S = 100000.

where the second term in the right hand side represents the number of kinks
disappeared in dt by annihilation, and S stands for the system size. The
important point is that N1(t) = N2(t) = N(t) (remember that we are dealing
with averaged quantities), so that (2.65) transforms into _N(t) = �(2v=L)N(t)2.
Integration of the previous equation gives N(t) = [(2v=L)t + N�1

0 ]�1 � t�1, so
that the average interkink distance L(t) � N(t)�1 � t is linear with time.

We note that this mean field argument and the linear growth law does not
hold for a discrete model with domain walls performing independent random
walks; in this case a power law L(t) � t1=2 can be rigorously demonstrated
[89, 119]. This fact is not surprising because it is known that growth laws
for discrete and stochastic models may differ from those of the corresponding
continuous and deterministic versions [46]. One representative example is
the Ising model with Glauber dynamics (section 1.4.1.a) versus the model A
dynamics (section 1.4.1.b). In the former, the characteristic domain size grows
as L(t) � t1=2 independently of the dimensionality, whereas in the latter the
growth law is L(t) � log t for d = 1 and L(t) � t1=2 for d > 1. An explanation for
the failure of the mean field argument when applied to the discrete model is
that the initial fluctuation �N in the number of kinks moving in each direc-
tion is important. It seems that such fluctuations are not significant enough
in the continuous model in which domain walls emerge from a slight pertur-
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bation of the unstable state A1 = A2 = A3 = 0. To check this idea we have
computed the growth law L(t) for the continuous system with modified initial
conditions. We have generated initial conditions with a wider distribution of
the random variable �N as follows: for each point xj of the discretized mesh, a
random number nj from the set f1; 2; 3g is chosen. Then the amplitude values
at xj are Ak(xj) = Æknj , k = 1; 2; 3 (Æij stands for the Kronecker function). This
generation of initial domain walls mimics the situation of a discrete model.
The histogram of �N for the situations considered is shown in Fig. 2.17. For
the artificially generated initial distribution of kinks we obtain a growth rate
which is no longer linear as shown in Fig. 2.17.

We finally note that at long times the system will consist of an homoge-
neous roll state or a group of kinks moving either to the right or to the left2.
Note that the periodic boundary conditions impose constraints about the num-
ber of such moving kinks. To be precise, the number of kinks moving in a
fixed direction must be a multiple of three. We can form a subgroup of three
kinks moving in the same direction by joining those appearing in each row
of Fig. 2.10. The moving kinks will continue interacting among them until
eventually they all will disappear. In this situation we expect the growth law
to be logarithmic with time but one of such groups is composed typically of
three, six or rarely nine kinks, a number too small to generate good statistics.

2.4.2.b Scaling function

We now address the question of the validity of the dynamical scaling hypoth-
esis (1.91a). For this purpose, we have plotted the equal time correlation
function C(x; t) versus the scaled length x=L(t) for several times. Fig. 2.15
shows the scaling function in the potential case. In Fig. 2.18 we show, for a
value Æ = 0:001, the correlation functions for several times before and after
scaling the system length. Our results show that the correlation functions
follow a single profile when the length is scaled with the characteristic do-
main sizes obtained above. We therefore conclude that a scaling description
of the system is also valid as in the potential case, but now with a nonpo-
tential dynamics. The upper limit of the time interval during which there is
scaling is determined by the appearance of finite size effects. The range of
values of Æ for which there is scaling in a quite large time interval is rather
small. For values of Æ of even a few tenths, the finite size effects show up for
very short times. Moreover the fluctuations in the scaling function grow as
Æ increases. For these reasons, we have not been able to obtain a conclusive
comparison between scaling functions for different values of Æ, although their
shapes appear to be rather insensitive to the value of Æ.

2We have checked on our numerical simulations, that on average, half the runs lead to a
state corresponding to a group of kinks moving to the right and half of them to kinks moving
to the left.
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Figure 2.18: (a) Equal-time correlation function vs the nonscaled length for Æ = 0:001, S =
1000, and several different times from t = 150 to t = 15000; (b) equal-time correlation function
vs the scaled length. The system parameters and the times for each curve are the same as in
(a).

2.5 Two-dimensional Systems

In 2D more complicated phenomena may occur. Just like the 1D case, we will
take real variables and, except in section 2.5.3, we will restrict ourselves to
the ID terms (2.2) and will focus on the region where the rolls are the stable
homogeneous solutions.

In Fig. 2.19 we present some snapshots of the dynamical evolution of the
system for the potential and nonpotential regimes. When Æ = 0 and from
the point of view of Statistical Mechanics, the system is described by three
coupled nonconserved scalar order parameters with short-range interactions
subjected to a relaxational gradient dynamical flow. According to the general
discussion of section 1.4.1 for this kind of systems, the dynamical evolution is
such that the system coarsens while approaching the minima of the Lyapunov
potential FBH [Eq. (2.7)]. The final stationary state is a roll solution filling up
the whole system. For the nonpotential situation it happens that, even below
the KL instability region, the system remains in a persistent dynamical state
in which no domain grows to fill the whole system. There are two reasons for
that:

(1) having more than two equivalent states, and

(2) the nonpotential dynamics.

If only two fields were involved, the dynamical evolution drives the system
to a state composed of islands of one phase immersed in a sea of the other
phase. These closed domains either expand or shrink. However, when a third
amplitude comes into play, there exists the possibility of formation of points
(to be called vertices) where the three fields take the same value. As it will be
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Figure 2.19: Snapshots corresponding to the numerical simulation of system (2.1) in two
dimensions with isotropic diffusion terms. The red, green and blue regions represent the
regions occupied by the modes A1, A2, and A3 respectively. Parameter values are � = 4:0 and
Æ = 0 (2) for the potential (nonpotential) regime.
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seen later, the nonpotential dynamics prevents the system from coarsening
by inducing the rotation of front lines around vertices.

The isotropic nature of the ID terms make fronts, which separate two ho-
mogeneous roll states, to move in the normal direction to each point. In ap-
pendix C we demonstrate that the normal front velocity (eikonal equation) is
given by:

vn(r; t; �; Æ) = ��(r; t) + vp(�; Æ); (2.66)

where � is the local curvature of the front line and vp(�; Æ) is the planar front
velocity. This is just equal to the velocity of a (isolated) one-dimensional front
[Eq. (2.62)] and it only depends on the system parameters. For �, Æ fixed, there
exists a critical value of the curvature, �c = vp, such that an interface does not
propagate (outwards). In the case of a circular drop of radius R, Eq. (2.66)
transforms into vn = �R�1+vp. We conclude that for a radius Rc = v�1p , and as
long as vp > 0, the drop neither grows nor shrinks. Any drop with radius R >
Rc grows and if R < Rc it shrinks. If vp < 0, both nonpotential and curvature
effects act in the same direction leading to the collapse of the droplet. The
concept of critical radius was already introduced in section 1.3.1 when we
studied the interface dynamics of spherical domains in relaxational gradient
flow systems. However, while the critical radius defined there had its origin
in the potential difference between the asymptotic states of the interface, in
the present case it stems from nonpotential effects.

2.5.1 Vertex Dynamics

Points where the three competing fields A1, A2 and A3 take the same value
are called vertices. Once a vertex is formed, and whenever the nonpoten-
tial parameter Æ is different from zero, the front lines meeting at the vertex
start rotating (clockwise or anticlockwise) as they twist. The sense of rotation
changes with the sign of Æ. When the stationary state is attained, the front
lines adopt a spiral shape, their tangent vectors at the vertex form an angle

vn

Figure 2.20: Several stages of the formation of a single spiral. Arrows stand for the normal
front velocity.
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of 120Æ with each other, and the structure rotates with a constant angular ve-
locity !. We observed numerically that the shape of a front line is close to
an Archimedes’ spiral. On the other hand, since the curvature of an spiral
decreases with the distance to the center, according to (2.66) the normal front
velocity of a rotating front line increases as moving away from the vertex.
Fig. 2.20 shows several stages of the formation of a single spiral. The rotation
angular velocity ! of a spiral front line around a vertex depends on the non-
potential parameter Æ. In next section we study the dynamics of an isolated
spiral and in particular the dependence of ! on the system parameters.

2.5.1.a Dynamics of an isolated spiral

We follow a geometrical approach that takes as starting point an integro-
differential equation for the curvature of a front line with a free end. Another
approach starts from the differential equation that gives the points of the
rotating front line. In either case, we are led to the result that the rotation
angular velocity behaves as (see appendix D):

! = (8=27)1=2 �3=20 v1=2p / v2p; (2.67)
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Figure 2.21: (a) Curvature �0 of a front line at the vertex position as a function of the planar
front velocity vp; (b) rotation angular velocity of a vertex as a function of v2p�

3=2
0 , and (c) as

a function of v2p. In (b) the dotted straight line is the linear regression fit of the displayed
points; its slope is 0:52, a value close to the theoretically predicted value (8=27)1=2 ' 0:54. The
straight line in (c) fits the first eight points. The parameter � is equal to 3:5 for the three
plots.

where �0 is the curvature of the front line at the vertex. Now, since vp �
Æ+O(Æ2) [see Eq. (2.62)], it yields ! � Æ2+O(Æ3). In Fig. 2.21a we see that the
linear relation between �0 and vp is well-satisfied for small and intermediate
values of vp, but it breaks down when nonpotential effects are strong (large
vp’s). In Figs. 2.21b–c we represent the rotation angular velocity as a function
of �3=20 v1=2p and v2p. The relation ! / �3=20 v1=2p is well-satisfied in the whole range
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of parameters. On the other hand, just like the curvature at the origin �0, !
loses the linear relation with v2p for large vp’s.

The rotation angular velocity of an isolated vertex in closely related to the
period T between the alternating modes in a fixed point of space. A behavior
1=T / ! � v2p � Æ2 is expected for Æ small (see section 2.5.3).

2.5.1.b Critical distance for vertex annihilation

When a pattern grows from random initial conditions, a multivertex config-
uration emerges. For Æ 6= 0, large systems do not reach a final homogeneous
state because coarsening is inhibited by spiral motion. However, small size
systems can reach a final homogeneous state through vertex annihilation.
Vertices can disappear from the system in a number of ways, depending on
the type of boundary conditions (see next section). In particular, two vertices
with opposite sense of rotation annihilate with each other if located closer
that a critical distance dc(Æ). On the contrary, if they are separated a distance
d > dc, they will never annihilate. In Fig. 2.22 we show several stages of
the vertex annihilation process. As a consequence, coarsening will occur for
system sizes S . dc since in that case any pair of vertices will be closer than
the critical distance. When two counter-rotating vertices are closer than dc
they approach each other as the domain between them shrinks. The area of
this domain becomes zero upon annihilation. If this domain is assumed to be
spherical its radius must be smaller than the critical one Rc [discussed after
(2.66)] for the vertices to annihilate. Then it is plausible that dc = O(Rc). This
argument gives a correct order of magnitude for dc as shown in Fig. 2.23b.
In order to get further insight into the magnitude of dc, let us consider two

Figure 2.22: Some stages of the
annihilation process of two counter-
rotating vertices. The sense of rota-
tion for each vertex is indicated.

(a) (b)

(c) (d)
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counter-rotating vertices in a situation such that the tangent vectors at each
vertex of two interfaces point at each other (along the line passing through
the two vertices). Looking carefully at the numerical simulations we observe
that, when the two vertices are separated a distance close to the critical one,
the aforementioned interfaces are approximately tangent. The situation is de-
picted in Fig. 2.23a. Let us consider for instance the left spiral. The paramet-
ric equations of the front line whose tangent vector at the left vertex (taken
as the origin) points at the right one are, in the approximation of Archimedes’
spirals, fx(�) = a� cos(�), y(�) = a� sin(�)g, where � is the polar angle and
a = 2=�0, �0 being the curvature at the vertex. If we call �c the angle (mea-
sured as indicated in Fig. 2.23a) corresponding to the point at which the front
lines are tangent, a straightforward calculation gives

dc = 2� a�c cos�c =
2:24

�0
� Æ�1; Æ small: (2.68)

In Fig. 2.23b the intervertex distance as given by (2.68) is compared with data
from numerical simulation. The agreement is quite good.
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Figure 2.23: (a) Scheme of two counter-rotating vertices separated the critical distance; (b)
critical distance for vertex annihilation as a function of the nonpotential parameter Æ for
� = 3:5. The critical radius is also included for comparison.

2.5.1.c Multivertex configurations

In a noncoarsening situation vertices are essentially pinned for short time
scales. For larger time scales, they diffuse through the system. We have
studied vertex motion using both periodic (pbc) and null boundary conditions
(nbc).

With pbc, the number of vertices is asymptotically constant and a non-
coarsening situation arises. The only way for the vertices to disappear is the
annihilation of two vertices with opposite sense of rotation. Furthermore, the
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number of vertices is always even, half clockwise and half anticlockwise. Ver-
tex motion is rather erratic at the beginning but eventually it becomes highly
correlated: vertices all tend approximately to move in the same direction.
This is seen in Fig. 2.24a.

a b

Figure 2.24: Vertex configurations for (a) periodic boundary conditions and (b) null boundary
conditions. The arrows indicate the direction of motion of vertices. Blue (red) points represent
clockwise (anticlockwise) vertices. Notice that, for periodic boundary conditions, vertices all
tend to move in the same direction.

On the other hand, the situation changes significantly when using nbc.
Now, there are no constraints neither about the number nor the type of ver-
tices. Moreover, vertices can disappear (but never appear) by an additional
mechanism which is the collision against an edge of the lattice. There may be
in fact situations in which all the vertices are clockwise or anticlockwise. Un-
like what happens with pbc, correlated motions of vertices are not observed
(see Fig. 2.24b).

2.5.2 Domain Growth and Dynamical Scaling

We already said that coarsening takes place (for arbitrary large systems) as
long as the nonpotential parameter Æ is identically zero, that is, in the po-
tential limit. It is well-known that growth processes corresponding to a non-
conserved scalar order parameter subjected to a relaxational gradient type
dynamics with a curvature driven interface motion are self-similar with a
growth law L(t) � t1=2 [32, 33, 34]. Actually model (2.1) consists of three cou-
pled nonconserved scalar order parameters, but the same results apply in this
case.

When Æ 6= 0, we force a situation in which one of the three amplitudes
vanishes to induce nonpotential domain coarsening. This may be done with
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Figure 2.25: Time evolution of the characteristic domain size (with logarithmic axis scales)
for � = 3:5 and Æ = f0:001; 0:010g. Time extends over the range for which dynamical scaling is
observed.

an initial condition of the form fA1(r; 0) = 0; A2(r; 0) = �2(r); A3(r; 0) = �3(r)g,
where �2;3(r) are small random perturbations. In this way, only the ampli-
tudes A2 and A3 are excited in the transient dynamics, while A1 remains
zero. When only domains of two of the three amplitudes grow, vertex for-
mation is no longer possible and coarsening takes place. Fig. 2.25 shows,
with logarithmic scales, the time evolution of the average domain size L(t)
for Æ = f0:001; 0:010g; the maximum time for each curve indicates the begin-
ning of the appearance of finite size effects. The quantity L(t) has been ob-
tained as the width of the equal time correlation function (spherical averaged)
C(r; t) =



Ai(r + x; t)Ai(x; t)

�
. The curve for Æ = 0:001 is nearly linear with

a slope of 0:36 � 0:01. This value is smaller than the value 0:5 corresponding
to the potential limit. The value Æ = 0:01 leads to a nonlinear curve for the
log-log plot of L(t). This indicates that the time evolution of the characteristic
domain size does not follow a power law. From the eikonal equation (2.66)
it follows that _L � vp asymptotically, so that one would expect a behavior
L(t) � t. However, very large systems could be needed in order to observe this
asymptotic behavior.

Dynamical scaling can be proved by overplotting, for different times, the
pair correlation function C(r; t) against the system length rescaled by L(t). We
have first checked that model (2.1) shows dynamical scaling with a scaling law
L(t) � t1=2 in the potential limit. Numerical evidence is show in Fig. 2.26. In
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Figure 2.26: Equal-time correlation function versus (left) the nonscaled length and (right)
scaled length for the potential case and different times in the interval �t = [40; 99]. The inset
shows the scaling law L(t) t1=2. Other parameters: � = 3:5, S = 256� 256.

Fig. 2.27 the averaged correlation function before and after scaling the system
length by the characteristic domain size is plotted in a nonpotential situation
for Æ = 0:01. Clearly there is dynamical scaling. Therefore, nonpotential
effects do not break down self-similarity in the case here studied. We also
came to the same conclusion in section 2.4.2 for one-dimensional systems.

We have also observed the same results for other values of Æ. However,
when Æ becomes large, finite size effects appear relatively soon so that the
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Figure 2.27: Equal-time correlation function versus (left) the nonscaled length and (right)
scaled length for Æ = 0:01 and different times in the interval �t = [10; 74]. Other parameters:
� = 3:5, S = 256� 256.
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Outside KL Inside KL

∇2 →

∂xi

2 →

Figure 2.28: Snapshots corresponding to a numerical simulation in 2D of the BH model (2.1)
with isotropic (LID

j = r2) and anisotropic (LAD
j = @xjxj ) spatial derivatives. Cases out of and

inside the KL instability region are presented. Parameter values are � = 0:1 and Æ = 0:05
(1:3) outside (inside) the KL regime.

range of time to be considered is rather small.

2.5.3 The Role of the Spatial Derivatives

We compare in this section the dynamical evolution corresponding to each
of the isotropic and anisotropic spatial dependent terms presented in section
2.2, Eqs. (2.2) and (2.5) respectively. In particular, we study the effect of the
different dynamics on the alternating period, also inside the KL instability
region. It is important to realize that, above the KL instability, the period
of alternation between the modes in a fixed point of space is the result of two
combined phenomena: (1) the KL instability itself which manifests in the bulk
of domains, and (2) the interface rotation around vertices.

We will show in the remaining of the section some results that follow,
mainly, from a numerical integration of Eqs. (2.1) in 2D. It appears from
the numerical simulations that the behavior beyond the KL instability point
depends strongly on the type of spatial derivatives used as well on the mag-
nitude of the parameter � = � � 1. We discuss first each type of derivatives
separately.

Isotropic derivatives: Because of the isotropic nature of these terms, fronts
move in the normal direction to each point, with a velocity given by the



2.5 Two-dimensional Systems 83

Outside KL Inside KL

∇2 →

∂xi

2 →

Figure 2.29: Snapshots corresponding to a numerical simulation in 2D of the BH model (2.1)
with isotropic (LID

j = r2) and anisotropic (LAD
j = @xjxj ) spatial derivatives. Cases out of and

inside the KL instability region are presented. Parameter values are � = 2:5 and Æ = 2 (3:5)
outside (inside) the KL regime.

eikonal equation (2.66). Closed domains have spherical symmetry and spi-
ral structures are close to Archimedes’ spirals.

For � small, the bulk instability combined with the front motion is such that
the intrinsic KL period stabilizes to a statistically constant value. This is
to say: in a given point of space, we can see that the dominant amplitude
changes due both to invasion from a rotating interface and a new amplitude
growing inside the bulk. We give evidence of this combined mechanism in
Fig. 2.28 where we have used the value � = 0:1 and we show representative
configurations inside and outside the instability region.

For higher values of �, the KL intrinsic period in the bulk is observed to
increase with time. This is the same phenomenon that occurs in the zero-
dimensional model without noise (see section 2.3.3). Therefore at long times
the KL period is so large that we only see rotating interfaces around vertices,
just like below the instability point. The two images of the upper row in Fig.
2.29 show domain configurations at long times for � = 2:5, below (Æ = 2) and
beyond (Æ = 3:5) the KL instability point in the case of the isotropic terms.
Apart from the typical size of the domains, it appears that there is no quali-
tative difference between them.

Anisotropic derivatives: Interface propagation no longer follows the normal
direction at each point. Closed domains stretch or collapse along preferential
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Figure 2.30: Inverse of the alternating mean period as a function of Æ 2 for the 2D BH model
with isotropic and anisotropic spatial-dependent terms. Each plot corresponds to a different
value of the parameter �. The KL instability takes place at the right of the vertical dotted
lines.

directions so that they adopt an elliptic shape rather than a spherical one.
Moreover the number of vertices is not constant for long times but they an-
nihilate among them and also originate from the collision of interfaces. Two
interfaces associated with the same vertex (and thus rotating in the same
sense) may collide and generate new vertices.

Both for small and large �, in the KL regime, we observe, in addition to the
front motion, domains of one phase emerging in the bulk of other domains;
this is seen at all times, indicating that, at variance with the isotropic deriva-
tive case, the period associated to the KL instability does not diverge with
time. Evidence is given in Fig. 2.28 for � = 0:1 and Fig. 2.29 for � = 2:5. Both
figures show results inside and outside the instability region.

In summary, for small �, the morphology of domains inside the KL instabil-
ity region turns out to be similar with both kinds of spatial-dependent terms.
The alternating period is dominated by the KL instability and is similar with
isotropic and anisotropic spatial derivatives. This shows up in the fact that
the period computed in a single point of space does not depend essentially
of the type of derivatives used, as shown in Fig. 2.30a. For large �, on the
other hand, the morphology is different for isotropic and anisotropic terms.
For the isotropic ones, spiral rotation dominates the dynamics because of the
divergence of the KL intrinsic period. For the anisotropic terms, both front
motion and bulk instability are present at all times. In Fig. 2.30b it is seen
that the period for the isotropic terms does not change abruptly on crossing
the instability point. This result supports the fact that the intrinsic KL period
is masked by that coming from rotating interfaces. Moreover, the theoretical
relation 1=T � Æ2 is well-satisfied for small values of Æ. On the other hand, the
curve T�1(Æ2) for anisotropic derivatives shows a jump at the instability point
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Æ = �. This reflects the fact that, above the instability, the alternating period
decreases by the appearance of the KL instability. Finally, as distinguished
from regimes with small �, the periods for isotropic and anisotropic spatial
derivatives are different for intermediate and large values of Æ, as seen in Fig.
2.30b.

2.6 Conclusions

We have studied interface dynamics and dynamical scaling in a nonpotential
coarsening process. The model considered features three coupled amplitudes.
It is related to models of competing population species and to a three-mode
description of the phenomenon of Rayleigh-Bénard convection in a rotating
cell.

In zero spatial dimensions, we find in a certain range of parameters a
decomposition of the dynamics into relaxational plus a residual part. In this
regime explicit expressions for the time variation of the amplitudes and the
period of the orbits are given. We also show how noise can stabilize the mean
period of the KL instability to a finite value. An analytical approach to the
mean period as a function of the system parameters and noise intensity is
reported in the limit of small noise intensities.

In one spatial dimension, the issues of domain growth and dynamical scal-
ing are studied below the KL instability point, where the dynamics is still
nonpotential and the system shows coarsening. A solitary kink moves at a
constant velocity due to the nonpotential dynamics. In a multikink configura-
tion, kinks move due to both domain wall interaction and nonpotential effects.
In any case the dynamics is governed by kink motion. This motion is such
that interfaces traveling in opposite directions annihilate with each other.
The average domain size is observed to grow logarithmically with time for the
shortest times but it becomes linear with time after a crossover. Logarithmic
and linear behaviors are associated with dominant kink motion mechanisms
which are domain wall interaction and nonpotential effects respectively. We
have found that the scaling hypothesis still holds, as in the potential case,
but with a different growth law that reflects the nonpotential dynamics of the
system.

The two-dimensional version of this problem exhibits rather different dy-
namical behavior grossly dominated by vertices where three domain walls
meet and which have no parallel in one-dimensional systems. The rotation of
interfaces around vertices is driven by nonpotential effects and this inhibits
coarsening for systems sufficiently large. The rotation angular velocity of the
interfaces around an isolated vertex goes as ! � Æ2 to leading order in Æ, the
nonpotential parameter. In multivertex configurations, vertices interact with
each other and diffuse through the system in a noncoarsening situation. Ver-
tices of opposite sense of rotation annihilate with each other if located closer
than a critical distance dc � Æ�1. As a consequence, coarsening takes place for
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system sizes S . Æ�1 (Æ small). Vertex motion is influenced by the boundary
conditions. For periodic boundary conditions, the number of vertices is even
(half clockwise and half anticlockwise) and they only can annihilate by pairs
of opposite sense of rotation. In addition, the motion is such that all vertices
tend to move in the same direction. On the other hand, for null boundary
conditions, there are no restrictions neither about the number nor the type
of vertices. These may also disappear by collision against the edges of the
system. Collective motions of vertices are not observed.

When only two amplitudes are excited in the transient dynamics, vertex
formation is not possible and there is domain growth. In this situation, we
checked that there is dynamical scaling, with a growth law different from
that of the potential dynamics limit. Finally, we investigated the influence
on the dynamics of the type of spatial dependent terms. For small values of
the parameter � = � � 1, the morphology of domains inside the KL region
turns out to be similar with isotropic and anisotropic spatial derivatives. The
alternating period is dominated by the KL instability and is similar with both
kinds of spatial-dependent terms. For large �, on the contrary, the morphology
of patterns as well as the alternating mean period are different for isotropic
and anisotropic terms. While the KL intrinsic period diverges with time with
isotropic derivatives, it saturates to a finite value in the anisotropic case.



Chapter 3

Parametrically Forced Complex
Ginzburg-Landau Equation:
Forcing at Three Times the
Natural Frequency

Abstract. The effect of a temporal modulation at three times the critical
frequency on a Hopf bifurcation is studied in the framework of amplitude equa-
tions. The situation is described by a complex Ginzburg-Landau equation with
an extra quadratic term, resulting from the strong coupling between the exter-
nal field and unstable modes. On increasing the intensity of the forcing, the
system goes from an oscillatory regime to an excitable one with three equivalent
frequency locked states. In the first regime, topological defects are one-armed
phase spirals, while in the second one they correspond to three-armed excitable
amplitude spirals. Analytical results show that the transition between these two
regimes occurs at a critical value of the forcing intensity. The transition between
phase and amplitude spirals is confirmed by numerical analysis.

3.1 Introduction

One of the main results that we have obtained in the previous chapter is the
coarsening inhibition due to nonpotential effects in a two-dimensional system
with three equivalent competing states. The system is at long times in a per-
sistent dynamical state governed by rotating three-armed spirals, each arm
corresponding to a domain wall separating two of the three stable states. The
same generic dynamical phenomenon can be found in systems described by a
single complex field with a broken phase symmetry. The symmetry breaking
may lead to the appearance of several equivalent states. We study here the
effect of a temporal modulation on a system near a Hopf bifurcation. This
may be described by a complex Ginzburg-Landau equation (CGLE) with a
parametric forcing that breaks the phase symmetry. We want to study the
analogies between the spatio-temporal dynamics of the phase locked states
and the competition dynamics of the roll states with three different orienta-
tions in the Busse-Heikes (BH) model. The study is within the more general
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context of spatio-temporal dynamics in systems with broken symmetry. Sev-
eral phenomena may occur on varying the intensity of the forcing term that
breaks the phase symmetry. In particular, the transition between one-armed
phase spirals and three-armed excitable amplitude spirals when the forcing
intensity passes through a critical value is investigated.

In a general framework, the nucleation of spatio-temporal patterns is in
many cases associated with continuous symmetry breakings, and these pat-
terns are thus very sensitive to even small perturbations or external fields.
Perturbations may be induced by imperfections of the system itself (e.g. im-
purities), of the geometrical set-up (e.g. the boundary conditions), of the con-
trol parameters, etc. External fields, on the other hand, may induce spatial or
temporal modulations of the control or bifurcation parameters. In fact, spa-
tially or temporally modulated systems are very common in nature, and the
effect of external fields on these systems has been studied for a long time.

For example, the forcing of a large variety of nonlinear oscillators, from the
pendulum to Van der Pol or Duffing oscillators, has led to detailed studies of
the different temporal behaviors that were obtained. It has been shown that
resonant couplings between the forcing and the oscillatory modes may lead
to several types of complex dynamical behaviors, including quasi-periodicity,
frequency lockings, devil’s staircases, chaos and intermittency [120, 121]. In
particular, physical systems that exhibit frequency locking include electronic
circuits [122], Josephson junctions [123], chemical reactions [124], fields of
fireflies [125], and forced cardiac systems [126]. The problem of frequency
locking is also considered in reference [127], where a periodically forced
Belousov-Zhabotinsky reaction-diffusion system is studied. Spiral patterns
are observed in the absence of forcing. As the perturbation frequency varies,
a sequence of resonance patterns is observed, each persisting over a range of
perturbations frequencies (see Fig. 3.1).

In equilibrium systems, the importance of spatial modulations is known
since a long time. For example, in the case of spatial modulations occurring
in equilibrium crystals, such as spin or charge density waves, the constraint
imposed by the periodic structure of the host lattice leads to the now com-
monly known commensurate-incommensurate phase transitions. The transi-
tion from the commensurate phase, where the wavelength of the modulated
structure is a multiple of the lattice constant, to the incommensurate one
occurs via the nucleation of domain walls separating domains which are com-
mensurate with the host lattice [128, 129].

In nonequilibrium systems, the systematic study of the influence of exter-
nal fields on pattern forming instabilities is more recent. It has been first
devoted to instabilities leading to spatial patterns. For example, the Lowe-
Gollub experiment [130] showed that, in the case of the electrohydrodynamic
instability of liquid crystals, a spatial modulation of the bifurcation parame-
ter may induce discommensurations, incommensurate wavelengths and do-
main walls. The similarities with analogous equilibrium phenomena rely
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Figure 3.1: Frequency locked regimes observed in an experiment on a periodically perturbed
ruthenium-catalized Belousov-Zhabotinsky reaction-diffusion system. The quantity !f=!0
stands for the ratio of the perturbation frequency!f to the natural frequency of the system !0.
Patterns are show in pairs, one above the other, at times separated by �t = 1=!f , except for
the 1 : 1 resonance where �t = 1=2!f . Striped boxes on the horizontal axis mark perturbation
frequency ranges with the same frequency-locked ratio. Taken from [127].

on the fact that, close to this instability, the asymptotic dynamics is poten-
tial [131, 132].

In the case of Hopf bifurcations, however, original effects occur as a conse-
quence of the nonpotential character of the dynamics. In particular, for wave
bifurcations, unstable standing waves or two-dimensional wave patterns may
be stabilized by pure spatial or temporal modulations of suitable wavelengths
or frequencies [133, 134, 135, 136]. The case of pure temporal modulations
of Hopf bifurcations in extended systems has been extensively studied by
Coullet and Emilsson [137] through amplitude equations of the Ginzburg-
Landau type. They considered periodic temporal modulations of frequency
!e = (n=m)(!0��), where n=m is an irreducible integer fraction, !0 is the crit-
ical frequency of the Hopf bifurcation, and � is a small frequency shift. Such
forcings break the continuous time translation down to discrete time trans-
lations, and the corresponding amplitude equations become, for the so-called
strongly resonant cases (n = 1; 2; 3; 4) [138]:

@tA = �A+ (1 + i�)r2A� (1 + i�)AjAj2 + 
n �An�1: (3.1)

Here �A stands for the complex conjugate of the field A. If the forcing intensity

n is sufficiently strong, this dynamics admits asymptotically stable uniform
steady states, corresponding to frequency locked solutions. If 
n � f�; �; �g,
the locked solutions behave as

R
2(n�2)
0 
2n � R4

0 ) R0 � 
1=(4�n)n : (3.2)
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Looking for a perturbed solution

A = R0 e
i�0(1 + ake

!kteikx); (3.3)

it yields the following growth rate:

!k / �
2=(4�n)n (2�
p
�); (3.4)

� � 3� 2n+ (n� 1)2 � (2n+ 1)�2: (3.5)

For the strongly resonant cases n = 1, 2, 3, 4, we have Re(
p
�) < 2 so the

frequency locked solutions are always stable in the large forcing limit, as it
was intuitively expected since the forcing has a stabilizing effect.

There are n different frequency locked solutions, which only differ by a
phase shift of 2�=n. In this regime, the dynamics resembles some sort of
excitability. The locked solutions may undergo various types of instabilities
[137]. One of them is of phase type and occurs when 1+�� is sufficiently neg-
ative. In this case, competition between phase instability and forcing leads to
the formation of stripes or hexagonal patterns, with their associated topolog-
ical defects. If the forcing is decreased, these structures break down through
spatio-temporal intermittency [137]. On the other hand, in the phase sta-
ble regime, frequency locked solutions may undergo a variety of bifurcations
when forcing is decreased, leading to oscillation, quasi-periodicity or chaos.

The equivalence between the different frequency locked states makes pos-
sible the formation of stable inhomogeneous structures. These structures are
composed of domains of the locked states separated by abrupt interfaces. Non-
potential effects may induce interface motion and, in particular, the formation
of n-armed spirals, each arm corresponding to an interface between two dif-
ferent frequency locked solutions.

These phenomena were studied in great detail by Coullet and Emilsson,
for n = 1 and n = 2, in one- and two-dimensional systems [137]. For n = 1
they find excitable spirals in 2D which are very similar to observed chemical
spiral waves. In the resonant case n = 2 Ising and Bloch walls may appear.
The Bloch walls break the chiral symmetry as the order parameter can have
two senses of rotation (in the complex plane to pass from one fixed point to
the other). The chiral symmetry breaking for Bloch walls gives rise to the
appearance of two-armed spirals centered around complex zeros. Unlike what
happens in 1D, the late time dynamics in 2D may not be defect free which
may inhibit coarsening. Starting from an initial condition which is a small
perturbation of a locked state, several situations may occur depending on the
value of the forcing amplitude 
2. For large values of 
2 the locked solution is
stable. On decreasing 
2 a finite wavelength instability takes place and one
can observe a number of patterns (see Fig. 3.2).

For n = 3, the existence of three-armed rotating spirals in two-dimensional
systems is briefly mentioned in [137]. The aim of this chapter is to study
this case in more detail, and especially the transition from phase spirals to
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Figure 3.2: Several snapshots of the real part of the complex fieldA for different values of the
forcing amplitude 
2. This decreases when going from (a) to (d). Description of the patterns:
(a) isolated hexagons; (b) two penta-hepta pairs; (c1) hexagon-stripe transition which leads to
(c2) a stripe pattern with defects that may eventually end up in (c3) a labyrinthine structure;
(d) intermittent destruction of pattern. Images taken from [137].

amplitude spirals as well as the analogies with the dynamics of systems with
three competing real amplitudes which were studied in chapter 2. The study
of the transition from phase to amplitude spirals confirms the robustness of
the Ginzburg-Landau dynamics, which is recovered at low forcing, with all
its complexity and its particular sensitivity to kinetic coefficients. Second,
it presents original dynamical behavior in the excitable regime which shares
generic properties with the spiral dynamics studied in chapter 2.

The chapter is organized as follows. The dynamical model and its uniform
asymptotic solutions are presented in section 3.2. Section 3.3 is devoted to
the description of the dynamics in terms of phase equations. The properties
and possible development of front and spiral solutions are discussed in section
3.4. Numerical results for two-dimensional systems are presented in section
3.5 and conclusions are drawn in section 3.6.

3.2 Uniform Solutions

We consider an extended system undergoing a Hopf bifurcation, and submit-
ted to a periodic temporal modulation of frequency !e = 3(!0� �). Sufficiently
close to the bifurcation, its dynamics may be reduced to the following complex
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Ginzburg-Landau equation, which is a particular case of Eq. (3.1):

@tA = (�+ i�)A + (1 + i�)r2A� (1 + i�)AjAj2 + 
3 �A
2; (3.6)

where 
3 is proportional to the external field intensity. The other parameters
are standard [137, 138]. To simplify the notation we will call 
 � 
3.

We look now for uniform solutions. By dropping the spatial derivative
terms, the corresponding uniform equations are, in phase and amplitude vari-
ables (A = R0(t)e

i�0(t)):

_R0 = �R0 � R3
0 + 
R2

0 cos 3�0; (3.7a)

_�0 = � � �R2
0 � 
R0 sin 3�0: (3.7b)

If we look for the stationary solutions (fixed points), Eqs. (3.7a–b) give

(1 + �2)R4
0 � (2�+ 2�� + 
2)R2

0 + �2 + �2 = 0; (3.8)

from where the amplitudes of the uniform solutions are given by:

R2
� =

1

2(1 + �2)

�
2�+ 2�� + 
2 �

p

4 + 4(�+ ��)
2 � 4(�� � �)2

�
: (3.9)

Such solutions exist provided that 
2 > 
2c , with


2c = 2[
p

(�2 + �2)(1 + �2)� (�+ ��)]: (3.10)

In the rest of the chapter we will be considering the case of resonant forcing
(� = 0), for which (3.10) becomes


2c = 2�(
p

1 + �2 � 1): (3.11)

Once the amplitude is determined by (3.9) the phase can be obtained from the
stationary version of (3.7b):

cos 3�0 =
R2

0 � �


R0
;

sin 3�0 =
��R0



:

(3.12)

Each value of R0 = fR+; R�g gives rise to three solutions for the phase �0

which only differ by a phase shift of 2�=3. Hence, for 
2 > 
2c the system
has six uniform solutions: f�u

1 ;�
u
2 ;�

u
3g corresponding to R� and f�e

1;�
e
2;�

e
3g

corresponding to R+. Looking for a perturbed solution in the form

A = (R0 + ÆR)ei(�0+Æ�); (3.13)

ÆR = ÆR0 e
ikx+!t; Æ� = Æ�0 e

ikx+!t;
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we get the characteristic equation for perturbations of wave number k:

!2 + 2!(2R2
0 � �+k2) + k4(1 + �2) +

2k2[2(1 + ��)R2
0 � �] + 3[(1 + �2)R4

0 � �2] = 0:
(3.14)

An analysis of this equation for k = 0 shows that the �u
i are always linearly

unstable whereas the �e
i are stable for j�j < p

3. The three �e
i solutions are

called the frequency locked solutions. For j�j > p
3 these become oscillatory

unstable (k = 0, ! 6= 0) in the range of forcing amplitudes 
c . 
0 < 
 < 
00

with


0 =
p

2c + � f(�);


00 =
p
�(1 + �2)=2;

(3.15)

f(�) =
1

2(3�2 � 1)

�
4
p

1 + �2(1� 3�2) + 7
p
3�3 � �2 + 3

p
3� � 5

�
: (3.16)

Here we have assumed (without loss of generality) that the 
’s are positive.
In the range 
c < 
 < 
0 there is an instability at k = 0, ! = 0. For 
 > 
00 the
homogeneous states R+ are linearly stable. Notice that in the BH model there
are also, in a certain range of parameters, three equivalent homogeneous sta-
ble states (referred to roll states; see section 2.3). Nevertheless, in the present
case the states are all associated with the same field whereas in the BH model
each state corresponds to a different amplitude.

In the case where the frequency locked solutions are stable, we can show
that the system behaves as an excitable one. Effectively, let us construct the
nullclines of the dynamics (3.1), which correspond to the system (3.7a–b) [see
Fig. 3.3]. In both figures, it is easy to see that the states labeled u are un-
stable, while the states labeled e are stable for small perturbations. However,
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Figure 3.3: (Left) nullclines and fixed points of the forced Ginzburg-Landau equation in the
(R; �) plane in rectangular coordinates for 
 = � = 4� = 1 and (right) in polar coordinates for

 = � = 0:01, � = 0:25. Note that for these parameters R+ � R�.
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for perturbations larger than a well defined threshold, the latter are unsta-
ble and the system makes an excursion in the phase space, before reaching
another, equivalent, steady state. It is a form of excitability. The excitability
threshold can be explicitly computed in the limiting case �; 
 � �. In this
limit, and taking into account that 
c ' �

p
�, the adiabatic elimination of the

amplitude in (3.7b) leads to the phase equation:

_�0 = �p�(
c + 
 sin 3�0); (3.17)

from where the excitable stable steady states are given by sin 3�e
i = �
c=


and 
 cos 3�e
i > 0, and the three unstable steady states are given by sin 3�u

i =
�
c=
 and 
 cos 3�u

i < 0, i = 1; 2; 3. In this case, the excitability threshold is
thus given by:

�� = j�e
i � �u

i j '
�

3
� 2

3


c


: (3.18)

For 
2 < 
2c there are no fixed points and asymptotic solutions correspond
to temporal oscillations of the limit cycle type (oscillatory regime). For 
 = 0
the limit cycle is a circle that becomes deformed for 0 < j
j < 
c (see Fig.
3.4). On increasing 
, the period of the oscillations increases and diverges for

2 ! 
2c . For 
2 > 
2c the system has six fixed points.

Figure 3.4: Uniform solutions
of Eqs. (3.7a–b) for several val-
ues of the forcing parameter 
.
System parameters are � = 1,
� = �2:0 (so 
c = 1:57). Note
that for 
 < 
c uniform solu-
tions are of the limit cycle type
whereas for 
 > 
c they become
fixed points.

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.5

1.0

Re(A)

Im(A)
γ = 0.0
γ = 0.5
γ = 1.0
γ = 1.5
γ = 1.6

stable

unstable



3.3 Phase Approximation 95

3.3 Phase Approximation

In this section we present several phase equations, each one valid in a differ-
ent region of parameters. These equations can be used to analyze the stability
of the uniform patterns.

3.3.1 The Oscillatory Regime

In the oscillatory regime (
2 < 
2c ), the phase dynamics may be obtained by
perturbing the uniform solution

�
R0(t);�0(t)

�
, and writing R = R0(t) + �(r; t),

� = �0

�
t + �(r; t)

�
. Following Hagan [139], the adiabatic elimination of the

amplitude perturbations leads to the following phase dynamics:

@t� = (1 + � ��)r2�+ �(r�)2 + � � � ; (3.19)

where T is the period of the oscillations, and

�� =

Z T

0

dt
2�R0 + 
 sin 3�0

2R0 � 
 cos �0

_�2
0Z T

0

dt _�2
0

; � =

Z T

0

dt

�
2�R0 + 
 sin 3�0

2R0 � 
 cos �0
� �

�
_�3
0Z T

0

dt _�2
0

:

(3.20)

For 
 ! 0, one recovers the usual Burgers equation

@t �� = (1 + ��)r2 ��+ (�� �)(r��)2 + � � � ; (3.21)

with �� = ���. Hence, in the regime where 1 + � �� > 0, stable (phase) spiral
waves may be expected, with wavenumber proportional to �, and thus depend-
ing on the characteristics of the oscillations [139, 140]. In this regime, the
qualitative behavior and interaction between these topological defects should
thus be almost insensitive to the forcing [141, 142, 143]. Furthermore, in
the regime where 1 + � �� < 0, plane waves are phase unstable (Benjamin-Feir
instability [144]), so that turbulence regimes may be expected [145]. In the os-
cillatory regime, the system presents thus qualitatively the same complexity
and the same spatio-temporal behaviors than self-oscillating systems. Only
quantitative aspects are affected by the forcing.

3.3.2 The Excitable Regime

In the excitable regime (
2 > 
2c ) the phase dynamics can be obtained in the
limit �; 
 � �, � � 1, by eliminating adiabatically the amplitude of the field.
Taking into account that, in this regime, R2 ' � and 
c ' j�jp�, we are left
with the following phase equation:

@t� = �p�(
c + 
 sin 3�) + (1 + ��)r2�� (�� �)(r�)2 +
�2(1 + �2)

2�
r4�:

(3.22)



96 Parametrically Forced Complex...

Besides the homogeneous solutions discussed in the previous section, this
equation admits front solutions connecting stable states asymptotically at
x = �1. In the case � = � = 0 the phase equation is relaxational and the
fronts connect two states with the same value of the potential and are, there-
fore, stationary. In the case � = � 6= 0, the phase equation is still relaxational
but now the steady states have different value of the potential and the front
moves. Moreover, when � 6= � there is a purely nonpotential induced front
motion. Eq. (3.22) will be used in the next section as the starting point to
compute the velocity of the front solution.

In order to study pattern forming instabilities, we can use (3.22) in the
limit of small �. Expanding the sin 3� up to linear order in �, we are led to
a damped Kuramoto-Sivashinsky phase equation [137]. It follows that fre-
quency locked solutions are stable for 1 + �� > 0. If 1 + �� < 0, a pattern
forming instability of the locked states would occur for [137]1

� > 36
2
�4(1 + �2)3

(1 + ��)4
: (3.23)

Since, in this regime, 
2 > 
2c , a necessary condition for this instability is thus

(1 + ��)4 > 72(
p

1 + �2 � 1)�4(1 + �2)3; (3.24)

and this condition cannot be realized in the f1 + �� < 0g domain. Therefore,
the frequency locked solutions are stable and pattern forming instabilities are
ruled out within the phase approximation.

Note that in reference [146] the forced CGLE is studied for the resonant
cases n > 4. Special emphasis is put in a front instability which may cause
the decomposition of phase fronts with a difference of � between the phase
of the uniform phase states into several fronts with a smaller shift phase.
The transition occurs when the strength of the forcing is reduced below some
critical value.

3.4 Fronts and Spirals

For j
j > 
c, the forced Ginzburg-Landau equation possesses three equivalent
excitable steady states. The excitability mechanism described in section 3.2
provides a natural way of building fronts between these steady states. Despite
the equivalence of the fixed points, such fronts are expected to move, as a
result of the nonpotential character of the dynamics as described in 3.3.2.

3.4.1 One-dimensional systems

A one-dimensional front connecting two stable phase locked states may move
due to nonpotential effects. This constitutes another example of front motion

1This corrects the misprint of reference [137] in � and k0 after Eq. (28).
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between dynamical equivalent states under a nonrelaxational dynamics. In
section 1.3.3 we studied the motion of 1D Bloch fronts in the case of the CGLE
with a 2!-forcing (case n = 2). The 1D BH model, described in 2.4, provided
another example of nonpotential front motion.

Consider a front solution of Eq. (3.22), e.g. �ij(x � vt), joining the states i
(at x ! �1) and j (at x ! +1), such that �e

j > �e
i . We look for a perturbed

kink solution in the form

�ij(x� vt) = �0
ij(x� vt) + "�1

ij(x� vt) +O("2); (3.25)

v = v1"+O("2); (3.26)

where " is a small parameter. If we assume that � � � � " () 
c � "), we
have, to order O("0):

�p�
 sin 3�0
ij + @yy�

0
ij = 0; y � x� vt; (3.27)

and to order O("1):

L�1ij = 	; (3.28)

L = �3p�
 cos 3�0
ij @y + @yy;

	 = �v1@y�0
ij +

p
�
c + (�� �)(@y�

0
ij)

2:

The solvability condition for the linear equation (3.28) is (	; @y�
0
ij) = 0, where

(�; �) is a scalar product defined as (f; g) =
R
R
dyf(y) �g(y). From this solvability

condition one can obtain the kink velocity to leading order as

v =

2�
c
p
�+ 3(�� �)

Z +1

�1
dy (@y�

0
ij)

3

3

Z +1

�1
dy (@y�

0
ij)

2

+O("2); (3.29)

where we have used the fact that
R +1
�1 dy @y�

0
ij = �e

j � �e
i = 2�

3
. Just like in

preceding calculations for other systems [see Eqs. (1.62) and (2.62)], the front
velocity turns out to be proportional to the nonpotential parameters in leading
order. If we assume �e

1 < �e
2 < �e

3 we have that for � > � the fronts �12, �23

and �31 move to the right, while the fronts �21, �13 and �32 move to the left.
Hence, any domain of one steady state, embedded in a domain of another one,
either expands or shrinks, leaving the system in one steady state (domains
of 2 embedded into 1, 3 into 2 and 1 into 3 shrink while domains of 1 into 2,
2 into 3 and 3 into 1 expand). However, a succession (from left to right) of
domains with states in the order 1, 2, 3, 1, etc. moves as a whole to the right.
When it is in the order 1, 3, 2, 1, etc., it moves as a whole to the left (see Fig.
3.5).
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Figure 3.5: Plot of the phase field in the excitable regime in 1D. Note the existence of three
homogeneous phase states. The arrows indicate the direction of motion of the several fronts.
Parameter values are � = 1, � = 2, � = �0:2, 
 = 0:5 > 
c = 0:199.

3.4.2 Two-dimensional systems

In two-dimensional systems, straight linear fronts have the same behavior
as in one-dimensional systems. Furthermore, sets of two inclined fronts sep-
arating domains with different steady states also move away or annihilate,
leaving the system in one steady state only (see Fig. 3.6).

New phenomena may arise when the three steady states coexist in the
system. In this case, three fronts, which separate the respective domains, co-
alesce in one point (a vertex). The three fronts are expected to rotate around
this point. The result is a rotating spiral whose angular velocity increases
with the forcing amplitude. Spirals corresponding to sequences of states in
the order 1 ! 2 ! 3 or 1 ! 3 ! 2 around the center have opposite senses
of rotation. Isolated vertices remain immobile, but nonisolated ones have a
dynamical evolution induced by mutual interactions, which may even lead to
the annihilation of counter-rotating spirals. This dynamical behavior is illus-
trated by the results of the numerical analysis presented in the next section.

The analogies with the dynamics of the two-dimensional BH model de-
scribed in section 2.5 are evident. In the case of the CGLE, the phase locked
states are associated with a broken phase symmetry of a single complex or-
der field. In the BH model, on the other hand, we deal with three dynamical
states in competition, each associated with a different real amplitude. In
two-dimensional systems, vertices may form when the three different types
of domains meet at one point (note that it is not possible in one-dimensional
systems [147, 148]). In both models, the nonpotential dynamics induces the
rotation of interfaces around the vertices preventing the system from coars-
ening.
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Figure 3.6: Example of motion of pairs of inclined fronts separating domains with equivalent
steady states of the forced Ginzburg-Landau equation for 
 > 
c.

3.5 Numerical Results

In this section, we present numerical results in two spatial dimensions which
illustrate the various dynamical behaviors described in the preceding sec-
tions. We have simulated the forced CGLE in two spatial dimensions by using
a pseudospectral method with periodic boundary conditions. We discretized
the system in a square mesh of 256� 256 points. Cases within and beyond the
validity of the phase approximation and above and below the line 1 + �� = 0
of the Benjamin-Feir (BF) instability were considered. In all the cases the pa-
rameter � was taken fixed and equal to 1. We point out that although in the
1D CGLE without forcing regimes of phase and defect turbulence only appear
above the BF line [149, 150] (1 + �� < 0), defect turbulence regimes in 2D for
1 + �� > 0 are reported in [151]. Taking as starting point some of the cases
treated in [151], we will study the structures observed when the forcing in-
tensity is increased from 
 = 0 to 
 > 
c. In table 3.1 we give the parameters
chosen for each one of the cases studied.

� � � 
c
Phase approx.

valid?
1 + �� Regime (
 = 0) Figure

1:0 2:0 �0:20 0:20 Yes > 0 Froz. stat. (*) 3.7
1:0 5:5 �0:20 0:20 Yes < 0 Froz. stat. 3.8

1:0 2:0 �0:76 0:72 No < 0 Ph. turb. (*) 3.9
1:0 0:0 �1:80 1:45 No > 0 Def. turb. (*) 3.10, 3.12
1:0 2:0 �1:00 0:91 No < 0 Def. turb. (*) 3.11

Table 3.1: Parameters of the various cases discussed in section 3.5. Cases marked with (*)
are studied in [151].
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We start the discussion with cases for which the phase approximation ap-
plies (�; 
 � �). Below the BF line (1 + �� > 0) we took f� = 2, � = �0:2;

c = 0:2g. This case corresponds to the frozen states regime when there is no
forcing. In Fig. 3.7 we show the modulus and phase of the complex field A
in the regimes of no forcing, oscillatory, 
 ' 
c and excitable. As expected,
spiral defects surrounded by shock lines occur in the no forcing regime [151].
When the strength of the forcing 
 is increased but still being below the crit-
ical value 
c (oscillatory regime), the phase dynamics does not change signif-
icantly. However, amplitude spirals appear in the modulus of the field. The
split of the phase into three locked states is observed approximately at the
predicted theoretical value of the forcing 
c. For forcings slightly greater than

c, we observe annihilation of vertices until an homogeneus state is reached
due to finite size effects. For larger forcings, the nonpotential dynamics is able
to stop vertex annihilation and therefore to inhibit coarsening.

Above the BF line (1 + �� < 0), we took � = 5:5 and kept the rest of
parameters as before. The most notorious difference with the previous case
is the existence of asymptotic frozen states in the oscillatory regime and also
close to the critical forcing 
c (see Fig. 3.8). Below 
c, we observe frozen targets
while close to the transition the frozen patterns hold three locked phase states
but without vertices. As expected, large enough forcings give rise to a time-
dependent dynamics with three-armed spirals rotating around vertices.

Beyond the validity of the phase approximation, different phenomena may
occur. In particular, pattern forming instabilities may take place for small
and moderate forcings above the critical value 
c. In the case above the BF
line with parameters f� = 1, � = �0:76; 
c = 0:72g (phase turbulence regime in
the absence of external forcing), oscillating targets that coexist with vertices
are observed close to the transition (see Fig. 3.9). In the modulus, pulses form
at the center of the targets and move away, while the phase oscillates between
�� and � with a certain period. Still above the BF line we have considered a
case of defect turbulence with parameters f� = 2, � = �1; 
c = 0:91g. In this
case the no forcing dynamics is characterized by a great number of defects.
The patterns observed on varying 
 are qualitatively similar to those of the
phase turbulence regime (see Fig. 3.11).

We also considered, beyond the regime of validity of the phase approxi-
mation, a case below the BF line. We took the set of parameters f� = 0,
� = �1:8; 
c = 1:45g, which correspond to a defect turbulence regime at 
 = 0.
As 1 + �� > 0, well-developed spirals can be observed (see Fig. 3.10). The
modulus of the field is characterized for 
 < 
c by amplitude spirals that ro-
tate around defects whereas the phase field shows a similar behaviour to the
no forcing situation. On the other hand, since j�j > p

3, and according to the
discussion of section 3.2, there exists a range of forcing intensities for which
the locked solutions are oscillatory unstable at zero wavenumber. This is seen
in Fig. 3.12. This instability is observed after the annihilation of two counter-
rotating defects. An oscillating target develops and its central part spreads
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over the system as it oscillates, and eventually it dissapears.
In all the cases studied, the phase becomes locked approximately at the

value 
c theoretically predicted for the forcing amplitude. When the phase
approximation is valid, the locked phase states are seen to be stable but ex-
citable spirals may be absent near the transition for system parameters such
that 1 + �� < 0. When the phase approximation is not valid, instabilities of
the homogeneous states for the phase may take place and give rise to complex
patterns. It is important to emphasize that for 
 � 
c the physics is essen-
tially the same for all the regimes of parameters that we have explored, with
interfaces rotating around vertices. This rotation, which is due to the un-
derlying nonpotential dynamics, inhibits phase coarsening which would take
place through vertex annihilation. The vertices are essentially pinned and
the resulting pattern is nearly time periodic at relatively short time scales.
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Modulus Phase

γ = 0

γ < γc

γ ≅ γc

γ > γc

Figure 3.7: Modulus and phase of the complex field A in the cases 
 = 0 (no forcing), 
 < 
c
(oscillatory), 
 ' 
c and 
 > 
c (excitable). Parameter values are � = 1, � = 2, � = �0:2 (so

c ' 0:2), and 
 = 0:1 (0:25) for the oscillatory (excitable) case.
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Modulus Phase

γ = 0

γ < γc

γ ≅ γc

γ > γc

Figure 3.8: Same as in Fig. 3.7. Parameter values are � = 1, � = 5:5, � = �0:20 (so 
c ' 0:2),
and 
 = 0:1 (0:25) for the oscillatory (excitable) case.
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Modulus Phase

γ = 0

γ < γc

γ ≅ γc

γ > γc

Figure 3.9: Same as in Fig. 3.7. Parameter values are � = 1, � = 2, � = �0:76 (so 
c ' 0:72),
and 
 = 0:5 (1:5) for the oscillatory (excitable) case.
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Modulus Phase

γ = 0

γ < γc

γ ≅ γc

γ > γc

Figure 3.10: Same as in Fig. 3.7. Parameter values are � = 1, � = 0, � = �1:8 (so 
c ' 1:45),
and 
 = 1 (1:6) for the oscillatory (excitable) case.



106 Parametrically Forced Complex...

Modulus Phase

γ = 0

γ < γc

γ ≅ γc

γ > γc

Figure 3.11: Same as in Fig. 3.7. Parameter values are � = 1, � = 2, � = �1 (so 
c ' 0:91),
and 
 = 1 (3) for the oscillatory (excitable) case.
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(a) (b)

(c) (d)

Figure 3.12: Snapshots of the modulus of the field in a regime of parameters where an
oscillatory instability at zero wave number occurs. The square encloses an oscillating region.
Time increases when going from (a) to (d).

3.6 Conclusions

In this chapter we have studied a special case of temporal forcing of nonlinear
oscillators beyond a Hopf bifurcation. Temporal modulations with frequencies
nearly equal to three times the critical one, may be strongly coupled with the
unstable modes associated with the Hopf instability. It modifies the character
of the bifurcation and the resulting spatio-temporal patterns.

For forcing amplitudes below a critical value, the system is in an oscilla-
tory regime, where spatio-temporal behavior strongly depends on the param-
eters of the associated Ginzburg-Landau equation. In particular, topological
defects correspond to one-armed phase spirals. For forcing amplitudes above
the critical one, the system is in a phase locked regime with three equiva-
lent steady states. In this regime there are a number of analogies with the
patterns observed in rotating Rayleigh-Bénard convection. In this case the
domains correspond to sets of paralell convection rolls with a certain orien-
tation and the vertices to points at which the roll amplitudes take the same
value. As in the case of the CGLE, the rotation of interfaces around vertices
is due to nonpotencial effects.
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Like in the n = 1 and n = 2 cases of strongly resonant forcings, a form of ex-
citability may also be observed. However, contrary to the n = 1 and n = 2 forc-
ings, no pattern forming instability of frequency locked states occurs, in this
case, in the regime where the phase approximation is valid. Due to the non-
potential character of the dynamics, fronts between equivalent steady states
move. The result is that, when the three equivalent steady states coexist in
the system, three armed rotating spirals are generated around vertices where
the fronts separating each domain meet. Hence, we predict a transition be-
tween one-armed phase spirals and three-armed excitable amplitude spirals,
which occurs when the forcing amplitude passes through a critical value. This
transition is confirmed by numerical analysis of the corresponding Ginzburg-
Landau equation.



Chapter 4

Domain Growth, Localized
Structures and Labyrinthine
Patterns in Vectorial Kerr
Resonators

Abstract. We study domain growth in a nonlinear optical system useful
to explore different scenarios that might occur in systems which do not relax to
thermodynamic equilibrium. Domains correspond to equivalent states of differ-
ent circular polarization of light. We describe three dynamical regimes: a coars-
ening regime in which dynamical scaling holds with a growth law dictated by
curvature effects, a regime in which localized structures form, and a regime in
which polarization domain walls are modulationally unstable and the system
freezes in a labyrinthine pattern.

4.1 Introduction: Domain Growth in Optical
Systems

Driven nonlinear optical systems offer a wealth of opportunities for the study
of pattern formation and other nonequilibrium processes in which the spatial
coupling is caused by diffraction instead of diffusion. These systems are spe-
cially interesting because they naturally lead to the consideration of vectorial
complex fields, being the vector character associated with the polarization of
light, and also because they often support the formation of localized struc-
tures (LS’s) [22, 67, 152] in the form of light spots which are being actively
considered for applications in parallel optical processing. In addition, Hamil-
tonian or conservative dynamics are, generally speaking, essential ingredi-
ents in the dynamics of nonlinear optical systems. Only very recently domain
growth has been considered in some of these systems and some growth laws
obtained from numerical simulations have been reported [9, 22, 23, 24].

In reference [9] the problem of domain growth is studied for two optical
systems that display optical bistability; in other words, there is coexistence
of two homogeneous linearly stable states in a certain range of parameters.
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The homogeneous solutions as a function of the input field are multivalued
(s-shaped). In addition, these systems present a Turing type instability of
the homogeneous solutions. The parameters are chosen to give a regime of
bistability and in the weak dispersion limit (small cavity detunings). Un-
der these conditions, the Turing instability is close to the limit points of the
domains of multivalued homogeneous solutions. In addition, the band of un-
stable wavevectors includes k = 0 and is small (the critical wavevector of the
Turing instability is close to zero). Starting from a random perturbation of a
linearly unstable homogeneous state, modes with small wavenumber (includ-
ing zero) are excited and interact during the transient dynamics. For these
two models three stages of the space-time evolution are distinguished in ref-
erence [9]:

(S1) Formation of a labyrinthine structure in the short time limit due to the
exponential amplification of the unstable modes.

(S2) The cavity field displays a few islands formed by one of the homogeneous
steady states. Coarsening takes place with a growth law L(t) � t1=3,
similar to that of the Lifshitz-Slyozov-Wagner (LWS) theory [30] (see also
sec. 1.4.1.c).

(S3) The system ends up with a unique stationary stripe.

The first model is a Swift-Hohenberg equation type with real coefficients
obtained from the Maxwell-Bloch equations for nascent hysteresis in the
weakly dispersive regime [153]. This is a relaxational gradient equation
which can be expressed in the form (see [9] for the details):

@t = �ÆF
Æ 

; F =

Z �
�V ( ) +

1

2
(r2

? )
2 � (r? )

2

�
; (4.1)

V ( ) =

��
C � 3 2

s

6�2

�
�
p
3 s

 

3
�  2

4

�
 2; (4.2)

where  has to do with the amplitude of the cavity field ( s is the homogeneous
state) and r? is the gradient in the transverse plane. The key point is that
the term �(r? )2, which has to do with “surface tension”, has a negative
contribution. The authors of ref. [9] claim that it is the reason why the final
state is a stripe rather than a disk. Notice that in the case of the Ginzburg-
Landau functional (1.6), the contribution from the surface tension is positive.

The second system that produces bistability is the degenerate optical para-
metric oscillator (DOPO) in a ring cavity driven by an external injected signal
E0 at frequency 2!. This field is converted into a field at frequency ! by a
quadratic nonlinear medium (�(2) medium). This conversion process can be
described by the following pair of coupled equations [154]:

@tE1 = �(
 + i�1)E1 + E0 � E2
2 + ia1r2

?E1;

@tE2 = �(1 + i�2)E2 + E1E
�
2 + ia2r2

?E2;
(4.3)
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where

E1;2 : electric field envelopes at frequencies !1 = 2!, !2 = !.

�j : cavity detuning of the field Ej.


 : ratio of the photon lifetimes at frequency 2! and !.

a1;2 : diffraction coefficients (phase matching imposes a1=a2 = 2).

Eqs. (4.3) provide a clear example in which the diffusion (r2) is replaced
by diffraction operators (ir2). Eqs. (4.3) admit two types of homogeneous
solutions:

(HS1) Nolasing state:

jEs1j2 = E2
0


2 +�2
1

; Es2 = 0: (4.4)

This is stable for E0 <
p

(
2 +�2
1)(1 + �2

2) = Eth.

(HS2) Lasing state:

jEs1j2 = 1 +�2
2; E2

0 = jEs2j4 � 2(�1�2 � 
)jEs2j2 + jEthj2: (4.5)

This is bistable if �1�2 > 
.

A situation of bistability in which both detuning parameters are negative is
considered. Under this condition, the nolasing state undergoes a modula-
tional instability at E0 = ET =

p

2 +�2

1. Taking �2 � 1, the wavenumber
of maximum growth rate kT =

p��2=2 is close to zero. Starting from a ran-
dom perturbation of the unstable homogeneous steady state, three stages of
evolution take place. This is seen in Fig. 4.1. In the first stage L(t) � exp(t)
whereas the asymptotic growth law is L(t) � t1=3.

There exists another range of parameters in which domain growth takes
place with a different growth law in the DOPO. When �2 > 0, the nolasing
state becomes unstable for homogeneous perturbations (k = 0). The system
evolves into any of two equivalent homogeneous lasing solutions that only
differ in sign. The coarsening process corresponding to the dynamical evolu-
tion of the domains of these stable solutions is found to be self-similar with a
growth law L(t) � t1=2 [48].

Another optical system for which a growth law t1=3 has been reported is
studied in [23]. The authors consider an optical ring cavity with plane mirrors
filled with a two-level medium and driven by a coherent plane-wave injected
field. In the mean field limit, the dynamics of the single longitudinal mode
can be described by the Maxwell-Bloch equations. The time-space evolution
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(a) (b) (c) (d)

Figure 4.1: Time sequence showing three stages of domain growth in a DOPO. The figures
in the upper (lower) row show the real part of the field E2 (E1). The initial condition is the
unstable homogeneous steady state with small amplitude added. (a) Labyrinthine pattern;
(b), (c) coarsening effect; (d) unique stationary stripe. High-field amplitude areas are plain
white. Taken from [9].

of the slowy varying envelope of the cavity electric field is described by the
simple partial differential equation [155, 156]:

@tE = E0 � (1 + i�)E � 2C(1� i�)E

1 + �2 + jEj2 + ir2
?E; (4.6)

where

E : normalized slowly varying envelope of the electric field.

E0 : real amplitude of the injected field.

r2
? : transverse Laplacian.

�;� : detunings.

C : population difference between the two levels normalized to the total
population.

A linear stability analysis shows that there is bistability if C > Cc, where
Cc is the real solution of (Cc � 4)(1 + 2Cc) = 27�2C2

c . The homogeneous steady
state solutions undergo a Turing instability, leading to the formation of sta-
tionary periodic patterns at I�T = jE�

T j2 = [C � 1 �pC(C � 4)]=2. Close to
these bifurcation points there exists a band [0; km] of unstable modes. On the
other hand, the critical wavenumber kT corresponding to the maximum gain
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is kT =
p��. Hence, spontaneous pattern forming instability requires � < 0

and C > 4 to have kT real and I�T positive. As in the previous models (4.1)
and (4.3), a situation such that the Turing bifurcation is close to the limit
points of the bistability domain is considered. This is controlled by the de-
tuning �. The initial condition consists of a small random perturbation of
the unstable homogeneous state, which is comprised between the two Turing
bifurcation points. After an initial transient, domains of amplitudes corre-
sponding to the lower and upper branches of the homogeneous steady states
develop. For large sizes, the average domain size shows dominant behaviors
in the sequence L(t) � t1=3 ! t ! t1=3. The final state is a unique station-
ary localized stripe in the form of a kink in the transverse profile of the field
cavity. Although the growth law of the LWS theory is recovered, there are no
evident analogies with the present case.

We note that none of the optical examples described so far incorporates
any conservation law. This raises the question of whether the important in-
gredient for a t1=3 growth law is the specific form of the space-dependent terms
or the existence of conservation laws.

The kinetics of domains has also been studied in vectorial intracavity
second-harmonic generation [24]. The situation corresponds to two orthogo-
nally polarized fundamental harmonic (FH) waves with equal mean frequen-
cies that generate a second harmonic (SH) wave of either polarization in a
high-finesse planar cavity with a quadratic nonlinear material. In contrast
to the conventional scheme of an optical parametric oscillator, driving fields
with two polarizations E1;2 at the FH frequency are assumed. The space-time
evolution equations for the emerging FH fields read:

@tA1 = ir2
?A1 + (i�A � 1)A1 + iA�2B � iE1;

@tA2 = ir2
?A2 + (i�A � 1)A2 + iA�1B � iE2;

@tB =
1

2
ir2

?B + (i�B � 
)B + iA1A2;

(4.7)

where

A1;2 : cavity fields (at the FH frequency !) of orthogonal polarizations.

B : idler (at the SH frequency 2!) . It is required for quadratic interaction
and corresponds to one of the two polarizations of the cavity fields.

E1;2 : driving fields (at the FH frequency !) of orthogonal polarizations.

�A;B : detunings from the resonances scaled with the FH resonance width.


 : ratio between the photon lifetimes.

For a symmetric input E1 = E2 = E above a certain threshold there are two
equivalent asymmetric (A1 6= A2) homogeneous stationary solutions which are
linearly stable. There is also a symmetric solution (A1 = A2) that is unstable.
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In each of the two asymmetric solutions one of the polarization dominates.
Domain walls between these two stable asymmetric solutions are then in fact
polarization domain walls. In 1D, an isolated polarization front is at rest
because of its symmetry with respect to an interchange of the two FH compo-
nents. In 2D, however, a planar front is modulationally unstable. For spheri-
cal domains of large radius the modulational instability manifests itself in a
radial expansion of the structure. The expansion velocity can be obtained by
comparing the curvature of the circular structure with that of a developing
modulational instability. The result is:

vexp ' g(kmax)

k2maxR
; (4.8)

where kmax is the wavevector at which the growth rate g of the modulational
instability is maximum. Consequently, a circular domain of one polarization
grows at the expense of the surrounding area with a velocity asymptotically
approaching zero. For small radii or several interacting fronts, LS’s may be
formed because of the existence of oscillating tails in the front profiles (see
section 1.3.4).

The examples discussed above show an interesting phenomenology for
problems of domain growth in nonlinear optical systems. However, clear
mechanisms for the growth laws have often not been identified, and some of
these laws do not correspond unambiguously to an asymptotic regime. In ad-
dition, the question of dynamical scaling has, in general, not been addressed
so far.

In the rest of the chapter we consider a Kerr medium as a clear example
of a nonlinear optical system in which the issues of domain growth and dy-
namical scaling can be addressed and for which detailed clear results can be
obtained. We show that after switching-on a pump field, domain walls are
formed which separate regions with different polarization of light. The dy-
namical evolution of these polarization domain walls leads to three different
regimes. For high pump values there is a coarsening regime for which we
demonstrate dynamical scaling with a growth law L(t) � t1=2. For lower pump
values this process is contaminated by the emergence of LS’s formed by the
collapse of polarization domain walls to a stable bound structure. In a third
regime the system evolves into a nearly frozen labyrinthine pattern caused by
a transverse modulational instability of the polarization domain wall. These
three qualitatively different regimes have been experimentally observed in
another optical system [67] and considered in the realm of Swift-Hohenberg
models [157].

The chapter is organized as follows. In section 4.2 we introduce the model
and disccuss the main features of the asymptotic homogeneous solutions. In-
terface dynamics is studied in section 4.3 for both one- and two-dimensional
systems. Finally section 4.4 contains some conclusions.
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4.2 Description of the Model and Asymptotic
Steady States

Our calculations are based on a mean field model that describes the trans-
verse spatio-temporal evolution of the two circularly polarized components
of the electric field complex envelope, E+ and E�, in an optical cavity filled
with an isotropic Kerr medium and pumped with a input field E0� (see Fig.
4.2) [25, 26]:

@tE�(r; t) = �(1 + i��)E� + iar2
?E� + E0� +

1

4
i�
���E���2 + �

��E���2�E�; (4.9)

E0

χ(3)

x

y

Figure 4.2: Configuration of the nonlinear cavity in a Fabry-Pérot geometry.

where � = +1 (�1) indicates self-focusing (self-defocusing), � is the cavity
detuning, a measures the relative strength of transverse diffraction, and r2

?
is the transverse Laplacian. The parameter � is related to the components of
the susceptibility tensor �(3). Except in section 4.3.1 we only consider the case
E0+ = E0� which corresponds to a linearly polarized input field. In this case
Eqs. (4.9) are symmetrical with respect to the interchange of the two fields
E�. We take E0+ = E0� � E0 as a real quantity. This implies that the main
axis of the polarization ellipse is in the X or Y direction. The relation of the
circularly polarized components E� with the Cartesian components Ex=y is

E� =
1p
2
(Ex � iEy): (4.10)

Therefore a linearly polarized state is characterized by E+ = E�, a circularly
polarized one has fE� = 0, E� 6= 0g, and a elliptically polarized state is such
that E+ 6= E� 6= 0.
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field E0. The meaning of the values E0;a ' 0:89, E0;b ' 1:01 and E0;c ' 1:14 is given in the
text. Parameter values are a = 1, � = 7 and � = 1. These values are used in the remaining
figures of this chapter.

Eqs. (4.9) are damped and driven coupled nonlinear Schrödinger equations
which can be rewritten as

@tE� = �E� � i
ÆF
ÆE�

�
; (4.11)

where F [E+; E�] is a real functional given by

F [E+; E�] =
Z

dr

�
��
�jE+j2 + jE�j2

�
+ a
�jr?E+j2 + jr?E�j2

�
� 1

4
�

�
1

2

�jE+j4 + jE�j4
�
+ �jE+j2jE�j2 + 2E0

�
Im(E+) + Im(E�)

���
:

(4.12)

Therefore, except for the linear dissipative term, the dynamics can be written
in Hamiltonian form. This corresponds to a rather different dynamics than
the normal relaxational dynamics considered in systems that approach a state
of thermodynamic equilibrium.

Eqs. (4.9) admit symmetric (Is+ = Is�) and asymmetric (Is+ 6= Is�) steady
state homogeneous solutions, where I� = jE�j2. The symmetric solution cor-
responds to linearly polarized output light, while the asymmetric one is ellip-
tically polarized. In Fig. 4.3 we show the homogeneous solutions as a function
of the input field E0.
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Figure 4.4: Marginal stability curves of the homogeneous solutions: (a) stability of the sym-
metric solution and (b) stability of the symmetric (up to the dotted line, which corresponds
to E0 = E0;b) and asymmetric solutions. The vertical dashed line separates the cases self-
focusing (right) and self-defocusing (left). Taken from [26].

The linear stability analysis of the homogeneous steady states can be per-
formed along standard procedures. In Fig. 4.4 the marginal stability curves
of the homogeneous solutions are shown. The homogeneous symmetric so-
lution is linearly stable for E0 < E0;a, while the asymmetric solutions only
exist for E0;a < E0;b < E0 and they are linearly stable for E0;b < E0;c < E0

in the self-defocusing case (� = �1) [158]. For the parameters we are con-
sidering (a = 1, � = 1, � = 7), E0;a ' 0:89, E0;b ' 1:02, E0;c ' 1:14. Since
we are interested in interfaces connecting stable homogeneous solutions, we
only consider the self-defocusing case which supports optical bistability above
a certain threshold for the input field E0 = E0;c. There are two equivalent
homogeneous stable solutions for E0;c < E0, one in which Is+ � Is� and the
other one, obtained by interchanging E+ with E�, in which Is+ � Is�. These
solutions are elliptically polarized, but very close to being circularly polar-
ized, because one of the two circularly polarized components dominates. For
simplicity we will call them the right and left circularly polarized solutions.
If the pump field E0 is switched-on from E0 = 0 to a value E0 > E0;c, only
the mode with zero wavenumber can initially grow from the initial condition
E� = 0. One then expects that either of the two equivalent homogeneous solu-
tions will locally grow and that domains separated by polarization walls will
emerge. This is indeed the process that we study. We note, however, that a
solution with a stripe pattern orthogonally polarized to the pump exists for
E0 > E0;a [25, 26]. This pattern solution is the one obtained by continuity
from the homogeneous symmetric solution through a Turing-like instability.
We have numerically checked that such a solution remains stable for pump
values E0 � E0;c, but it is not the solution approached by the physical process
just described of switching-on the pump to a value E0 > E0;c.
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4.3 Interface Dynamics

In this section we describe the main features of interface dynamics in one-
and two-dimensional systems.

4.3.1 One-dimensional systems

Due to the symmetry of the equations with respect to the interchange of the
two field components E+ and E�, a one-dimensional interface or kink is ex-
pected to be at rest. For elliptically polarized input light, however, the asymp-
totic solutions are no longer equally stable, so that a front connecting them
will move. In Fig. 4.5 we plot the velocity of a kink as a function of the ellip-
ticity � of the input field. The situation is qualitatively similar to that in an
equilibrium problem of a domain wall between two states with a nonzero “po-
tential difference” (see section 1.3.1). Nevertheless the dynamics under study
here does not have any potential or Lyapunov function.

We observe that the intensity profiles of the kinks do not approach mono-
tonically the asymptotic value of the homogeneous state. Since the front pro-
files have oscillatory tails, the interaction between two walls can lead to repul-
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Figure 4.5: Velocity of an isolated kink in 1D as a function of the ellipticity � of the input
field E0�. This is defined as � � 2 tan-1(E0+=E0�). Input field values are E0� = 2:0 and
E0+ = 2:0 +�E0. The inset shows the kink profile (in intensities) at two different times.
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Figure 4.6: 1D intensity profiles of the
polarization domain wall for two pump
values: E0 = 1:2, E0 = 2.

Figure 4.7: Snapshots of the intensities I+ and
I� at long times in 1D for several values of the
input pump E0. The boundary conditions are pe-
riodic and the initial condition corresponds to a
random perturbation of the homogeneous state
E� = 0.

sive forces [38]. In Fig. 4.6 we show a kink profile for two different values of
the input pump E0. The oscillatory tails are less important the larger is E0 but
the kinks are never monotonic for arbitrary large E0. Two kinks sufficiently
separated tend to attract each other. However the oscillatory tails prevents
them from getting closer than a certain distance. A localized structure forms.
On the other hand, if the kinks are very close to each other, repulsive forces
move them away until an equilibrium of forces is reached1. Notice that this is
different from what happens with monotonic kink profiles in other systems.
They are only subjected to attractive forces so that two adjacent kinks (of
opposite topological charge) might annihilate.

When several kinks are created in the transient dynamics, they interact
with each other. Due to the oscillatory tails, coarsening is absent and a frozen
pattern state is always dynamically reached. We show in Fig. 4.7 intensity
field configurations at long times for several values of E0. In most cases, a
periodic pattern forms; the associated wavenumber seems to depend on the
random initial condition. On the other hand, frozen aperiodic patterns may
arise. This is observed more frequently for large E0. It is known for other

1A final homogeneous state is obtained when the pump is not linearly polarized (E0+ 6=
E0�). An isolated domain wall is then no longer stationary.
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systems that oscillatory tails in the front profiles can stop coarsening in 1D
and give rise to frozen structures [38]. This is a manifestation of spatial chaos.

4.3.2 Two-dimensional systems

We find in two dimensions three different dynamical regimes for E0 > E0;c,
summarized in Fig. 4.8. For E0 > E0;2 domains grow and the system coarsens,
for E0;2 > E0 > E0;1 stable LS’s are formed, while for E0;1 > E0 > E0;c a
labyrinthine pattern emerges. These regimes are better understood by con-
sidering the evolution of an initial isolated polarization droplet: a circular
domain of one of the solutions surrounded by the other solution. We find that
the radius of the circular domain varies consistently with a curvature driven
front motion. The normal front velocity vn (eikonal equation) follows a law of
the form

vn(r; t) = �
(E0)�(r; t); (4.13)

where � is the local curvature of the interface and 
(E0) is a coefficient that
depends on the pump field amplitude. This interface dynamics is similar to
that discussed in section 1.3.1. However, what in that case was explained
in terms of surface tension effects, does not seem to apply to the present
situation, where surface tension is not a proper concept for the diffractive
spatial coupling considered in optical systems. For a circular domain we get
dR(t)=dt = �
(E0)=R(t). In Fig. 4.8 we show the function 
(E0) as obtained
from the numerical solution of Eqs. (4.9) in a two-dimensional system for
relatively large initial droplets. Notice that 
(E0) changes sign at E0 = E0;1,
which indicates a change from droplet shrinkage to droplet growth.

In principle, it is possible, following the same technique used in [148], to
work out the coefficient 
(E0) as a function of the planar front solutions. To
leading order, we are left with a linear system Mv = w, where the matrix
M depends on the planar front solutions and on the system parameters. The
condition for this linear system to be solvable is (vyK;w) = 0, where v

y
K 2

ker(My) represent any vector of the nullspace of the matrix My. However,
little analytical work can be done henceforth. The profiles of the planar fronts
and the nullspace ker(My) must both be computed numerically. Then we could
find the coefficient 
(E0) through the aforementioned solvability condition.

We first consider the regime of domain coarsening which occurs for E0 >
E0;2. In this regime 
(E0) > 0 and an isolated drop shrinks to zero radius. In
the general dynamics starting from random initial conditions around E� =
0, sharp domain walls are initially formed and they evolve reducing their
curvature. The system approaches a final homogeneous state in which one
of the two circularly polarized solutions fills the whole system (see Fig. 4.12).
In order to characterize the coarsening process we have calculated the pair
correlation function of I+ and I�, defined as

CI�(r; t) =


I�(x+ r; t)I�(x; t)

�
i.c.: (4.14)
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The average h� � � i is performed over a set of 100 different random initial con-
ditions. Due to the symmetry of the problem CI+ = CI� � C. The mean size
L(t) of the domains is calculated as the distance at which C(r; t) takes half
its value at the origin, i.e., C(L(t); t) = 1

2
C(0; t). As expected, we obtain a

well-defined asymptotic growth law L(t) � t1=2 that follows from domain wall
motion curvature driven (see inset in Fig. 4.9). We have further obtained
that the dynamics is self-similar, i.e., that there is dynamical scaling. This
is seen in Fig. 4.9 where we plot the spherical averaged correlation function
C(r; t) before and after rescaling the spatial coordinate of the system with the
characteristic domain size L(t). We observe that curves for different times
in the scaling regime collapse to the single scaling function after rescaling.
These results coincide with those obtained for many thermodynamic systems
with nonconserved order parameter [4, 32, 34, 69]. We note, however, that in
our case the dynamics does not follow the minimization of any obvious free
energy.

We next address the regime of formation of localized structures (E0;2 >
E0 > E0;1). In this regime, as in the previous case, 
(E0) > 0, and a large iso-
lated droplet initially shrinks with a radius decreasing as R(t) � t�1=2. How-
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ever the shrinkage stops at a well-defined final value of the radius. Initial
droplets with a smaller radius grow to this final stable radius. In the gen-
eral dynamics following the switch-on of the pump, domain walls are initially
formed. They first evolve reducing their length as in the coarsening regime.
But while in that regime a closed loop disappears, here it collapses to a stable
LS formed by a bound state of the domain wall. The final state is composed
of stretched domain walls and LS’s (see fig 4.13). What happens in our 2D
situation is a competition between the 1D repulsive effect between fronts and
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the curvature effect that tends to reduce a droplet to zero radius. When the
repulsive force is large enough, it might counterbalance the shrinkage process
driven by curvature, and thus leads to the formation of a LS. This happens
for E0;1 < E0 < E0;2. The mechanism is the one also discussed in [22]. Let
us point out that while LS’s appear only in a certain range of pump values
in 2D, they are supported in 1D for any value of E0 (we have explored values
up to E0 = 10) as explained in 4.3.1. These LS’s can be seen as a hole of I+
(I�) in the background of a circularly + polarized (� polarized) state, together
with a peak of I� (I+). Since the oscillatory tails are larger (in amplitude and
range) as E0 decreases, the size of the LS decreases with E0. We have found a
perfect linear dependence of the diameter of the LS with E0. In Fig. 4.10 we
show a plot of a LS together with its transverse profile, and the size of a LS
as a function of E0. Notice that the intensity in the center of the LS is greater
than in the surrounding background.
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Figure 4.11: Diagram of the modulational instability gain for a planar front in d = 2. AtE0 =
E0;1 there is no range of unstable modes so that the planar front is stable against transversal
perturbations. The images correspond to the development of a modulational instability for
E0 = 1:4.

We finally discuss the regime of labyrinthine pattern formation which oc-
curs for E0 < E0;1: switching-on the pump produces a very dense pattern of
domain walls that repel each other (see Fig. 4.14). In this regime 
(E0) < 0,
and an isolated droplet of arbitrary small size grows as R(t) � t1=2. In an in-
finitely large system the droplet would grow without limit, but with periodic
boundary conditions it grows until the interface surrounding the droplet inter-
acts with itself. Repulsion of the interface leads eventually to a labyrinthine
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pattern as shown in Fig. 4.14. An independent way of identifying the value
E0 = E0;1, below which labyrinthine patterns emerge, is by means of a lin-
ear stability analysis in 2D of the 1D domain wall profile. We have numer-
ically obtained that such a flat domain wall has a transverse modulational
instability for values of the pump amplitude for which 
(E0) < 0. We find
a long wavelength instability in which arbitrary small wavenumbers become
unstable for E0 < E0;1 (see Fig. 4.11). This is reminiscent of the situation de-
scribed for vectorial second-harmonic generation [24]. In physical terms, both
the droplet growth and the modulational instability indicate that the system
prefers to have the longest possible domain walls, or equivalently the largest
possible curvature. This leads to a nearly frozen state in which the oscillatory
tails of the domain walls prevent their self-crossing and in which coarsening
is suppressed. LS’s might form, but their natural tendency to grow is stopped
by surrounding walls.
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Figure 4.12: Snapshots corresponding to the time evolution of the intensities jE+j
2 and

jE+j
2 + jE�j

2 and evolution of an isolated spherical drop in the domain coarsening regime.
Patterns at times t = 30, 2400, 9000 and 30000. Drop images at times t = 0, 2000, 4300 and
5000.
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E+2 E+2 + E−2
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Figure 4.13: Same as in Fig. 4.12 in the regime of formation of LS. Patterns at times t = 16,
200, 7700 and 30000. Drop images at times t = 0, 4400, 7700 and 11000.
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Figure 4.14: Same as in Fig. 4.12 in the regime of labyrinthine patterns. Patterns at times
t = 15, 40, 110 and 3060. Drop images at times t = 0, 2200, 2600 and 4900.
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4.4 Conclusions

In summary, a vectorial kerr resonator a situation in nonlinear optics in which
many of the generic issues and possible scenarios of domain growth in non-
thermodynamic systems occur. In spite of the nonrelaxational dynamics we
have found a regime of self-similar evolution with a growth law characteristic
of curvature driven motion. In other regimes, obtained just by changing the
pump amplitude, domain growth is contaminated by the emergence of LS’s or
suppressed by an instability of the domain wall that leads to a nearly frozen
labyrinthine pattern. Domain walls and LS’s are here associated with the
polarization vectorial degree of freedom of light.



Chapter 5

Conclusions

Throughout this work the role of nonpotential dynamics in problems of do-
main growth has been considered in several systems. In these examples the
system has several equivalent homogeneous stable states which can be ap-
proached dynamically from an unstable initial state. Spatial domains of these
states are formed in the transient dynamics. General conclusions that follow
from the generic behavior of these systems are the following:

✦ New nonpotential mechanisms of domain wall motion lead to domain
growth laws different from the ones observed in the potential limit.

✦ Despite the different growth laws, dynamical scaling still holds in nonpo-
tential problems.

✦ In some cases there exist asymptotic statistically stationary states with
persistent dynamics in which domain growth is inhibited. These states
often originate in the nonpotential dynamics of topological defects. Such
dynamics prevents their annihilation and subsequent disappearance from
the system.

✦ Interactions among domain walls lead in some cases to stable localized
structures that contaminate a final homogeneous state and mask the dom-
inant growth law. This phenomenon can also occur in potential systems.
In 1D this might stop coarsening. Spatial instabilities of domain walls
can also lead to different forms of frozen nonhomogeneous states, such as
labyrinthine patterns.

More specific conclusions on the dynamics of the different systems consid-
ered are the following:

1. Busse-Heikes Model for Three Competing Amplitudes.

✶ In zero spatial dimensions (no spatial dependence) we find, in a certain
range of parameters, a Lyapunov potential that allows us to split the
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dynamics into a relaxational plus a residual part. We give explicit re-
lations for the time variation of the amplitudes and the period of the
orbits as a function of the energy. We show how noise can stabilize the
mean period of the Küppers-Lortz instability to a finite value. By using
the Lyapunov potential of the deterministic case, we deduce an approx-
imate expression that yields the period as a function of the system pa-
rameters and noise intensity. The period increases logarithmically with
decreasing noise intensity, a result confirmed by numerical simulations.

✶ The one-dimensional version of the model constitutes a prototypical non-
potential problem in which the issues of domain growth and dynamical
scaling can be explored. Out of the Küppers-Lortz instability region,
there are three stable states that coexist during the transient dynam-
ics. There is domain coarsening with a growth law with two dominant
behaviors, with a crossover between two well defined regimes. These
are characterized by a logarithmic (potential limit) and linear (nonpo-
tential limit) domain growth law respectively. Dynamical scaling holds
throughout the two regimes.

✶ The two-dimensional model exhibits rather different dynamical behav-
ior grossly dominated by vertices where three domain walls meet and
which have no parallel in one-dimensional systems. The system is at
long times in a persistent dynamical state composed of three-armed ro-
tating spirals, each arm corresponding to a domain wall that separates
two of the three stable phases. The rotation angular velocity ! of one
of such spiral structures goes as ! � Æ2 to leading order in Æ, the non-
potential parameter. Vertices of opposite sense of rotation annihilate
with each other if located closer than a critical distance dc � Æ�1. Ver-
tex motion is strongly influenced by the type of boundary conditions.
For periodic boundary conditions, the number of vertices is even (half
clockwise and half anticlockwise) and they only annihilate by pairs of
opposite sense of rotation. In addition, the motion is such that all ver-
tices tend to move in the same direction. On the other hand, for null
boundary conditions, there are no restrictions neither about the number
nor the type of vertices. These may also disappear by collision against
the edges of the system. Correlated motions of vertices are not observed.

Even being out of the Küppers-Lortz region, the nonpotential dynam-
ics may inhibit coarsening for large enough systems. When only two am-
plitudes are excited in the transient dynamics, the formation of vertices
is no longer possible and coarsening takes place independent of system
size. This domain growth process is self-similar with a growth law dif-
ferent from that of the potential dynamics limit.

The dynamics is different for isotropic and anisotropic spatial deriva-
tives. The most notable feature is that, in certain range of parameters,
the intrinsic Küppers-Lortz period diverges with time with isotropic
derivatives whereas it saturates to a constant value in the anisotropic
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case. The alternating period in a fixed point of space is also different for
both types of spatial-dependent terms.

2. Forced Complex Ginzburg-Landau Equation.

✶ Systems with a broken phase symmetry, in an excitable regime, can dis-
play similar generic dynamical behavior than systems with competing
fields. The Busse-Heikes model dynamics shows a number of analogies
with the excitable dynamics of the Ginzburg-Landau Equation forced at
three times the natural frequency.

✶ On increasing the intensity of the forcing, the system goes from an oscil-
latory regime to an excitable one with three equivalent frequency locked
states. In the first regime, topological defects are one-armed phase spi-
rals, while in the second one they correspond to three-armed excitable
amplitude spirals. Analytical results show that the transition between
these two regimes occurs at a critical value of the forcing intensity. The
transition between phase and amplitude spirals is confirmed by numer-
ical analysis.

3. Vectorial Kerr Resonators

✶ Self-similar dynamical evolution with a growth law characteristic of cur-
vature driven motion in a nonlinear optical system with a nonrelax-
ational dynamics has been demonstrated. Domains correspond to dif-
ferent equivalent states of polarization of light.

✶ In other regimes, obtained just by changing the intensity of the input
field, domain growth is stopped by the emergence of localized structures
or suppressed by an instability of the domain wall that leads to a nearly
frozen labyrinthine pattern.





Appendix A

Analytical Approach of the Mean
Energy for the Busse-Heikes
Model in the Presence of Noise

In this appendix we give an analytical approach for the integral
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with
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For a!1 we can perform a saddle-point type integration. The function

f(s; t) = s2 + t2 + st� s� t = �[st + (s+ t)(1� s� t)] (A.4)

is f(s; t) > 0, 8(s; t) 2 � = f(s; t) 2 R
2 = 0 6 s 6 1; 0 6 t 6 1 � sg. The

maxima of f(s; t) are reached whenever f(s; t) = 0 and this happens for
(s; t) = f(0; 0); (1; 0); (0; 1)g. Therefore, we approximate the integrals by the
contributions of these points only (see Fig. A.1):Z
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Figure A.1: Domain of integration of the in-
tegrals in Eqs. (A.3a–b). The regions �I and
�II used in the saddle-point type integration
are indicated.

where the factor 2 in the last integral on the rhs comes from the fact that
f(s; t) = f(t; s) and g(s; t) = g(t; s). Now, in order to find the asymptotic behav-
ior of the functions (A.3a–b), we linearize the function f(s; t) in regions �I and
�II of Fig. A.1.
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Region �I:

f(s; t) � �s� t: (A.6)

Region �II: By defining the variable �s = 1� s, we have that

f(s; t) = f(1� �s; t) � ��s: (A.7)

Using the linearized expressions (A.6) and (A.7) we find the following
asymptotic behaviors for �1(a) and �2(a):
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a!1

3

a4
; (A.8a)
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3
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We do now a quick saddle-point evaluation of the mean value of the energy
(A.1). When "! 0 we have that
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so w = O(1) gives the maximum contribution to the integral. For w = O(1) it
is w2�="!1 and we can approximate:
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Appendix B

Time Evolution of the Size of an
Isolated Domain for the
One-dimensional Busse-Heikes
Model

In this appendix a derivation of Eq. (2.63) is given. This equation expresses
the time evolution of the size of an isolated domain for the one-dimensional
Busse-Heikes model .

We consider an isolated domain bounded by two domain walls associated
with amplitudes A1 and A2, while A3 = 0 (see Fig. B.1). When the domain size
is much greater than the interface width (“dilute-defect gas approximation”),
a reasonable ansatz for this solution is

A1(x; t) = a
�
x� r(t)

�
+ b
�
x� d+ r(t)

�
+ w1(x; t);

A2(x; t) = b
�
x� r(t)

�
+ a
�
x� d+ r(t)

�� 1 + w2(x; t);
(B.1)

A2

L(t)

A3

A1

Figure B.1: Sketch of an isolated domain; L(t) is the instantaneous domain size.
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where r(t) measures the displacement of the kinks, d is the initial domain
size [so that the domain size at time t is d � 2r(t)], @tr and wi (i = 1; 2) are
assumed to be small corrections of order Æ and @twi to be negligible with re-
spect to wi. To simplify notation, we use: f � f

�
x� r(t)

�
; fd � f

�
x� d+ r(t)

�
.

The moving fronts a and b satisfy the boundary conditions a(1) = b(�1) =
0; a(�1) = b(1) = 1 and they are solutions of the system (2.53) (with one of
the amplitudes equal to zero) so that the following equations hold:

M+(a; b) =M+(bd; ad) =M�(b; a) =M�(ad; bd) = 0; (B.2)

where the action of the operators M�(�; �) is given by:

M�(f; g) = @xx � v(�; Æ) @x + f � f 3 � (� � Æ)fg2: (B.3)

The parameter v(�; Æ) is the front velocity as given by Eq. (2.62).
Introducing the ansatz (B.1) into (2.53) we obtain, to leading order, a linear

system of equations for w1 and w2:

L� = �0; (B.4)
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2� +K 0
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�
:

where the functions Ki(x; t) and K 0
i(x; t) (i = 1; 2; 3) are given by:

K1 = a(ad � 1)2 + 2b(a+ bd)(ad � 1) + bd(1� 2ad + b2);

K2 = a(ad � 1)2 + 2(ad � 1)(ab+ adbd + bbd) + bd(1 + b2);

K3 = �2 @xxbd + bd(3a
2 + 3abd + 2b2d � 2);

K 0
1 = �a(a + 2bd)(ad � 1) + bd(bd � 2ab� bbd);

K 0
2 = a(a+ 2bd)(ad � 1) + bd(2ab + bbd + 2adbd � bd);

K 0
3 = �2 @xxad + 3b2(ad � 1) + 3b(ad � 1)2 + 2a3d � 3a2d + ad:

The solvability condition for the existence of a solution
�
w1(x; t); w2(x; t)

�
for

(B.4) reads

(	y; �0) = 0; (B.5)

where	y belongs to the kernel of the auto-adjoint linear differential operator
L. We will show below that 	y is approximately given by (@xa; @xb)

T (here T
denotes the transposed vector), where a = a

�
x � r(t)

�
and b = b

�
x � r(t)

�
are

the domain wall profiles around x = r(t).
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The first component of the vector L	y is given by:

(L	y)1 = L11@xa+ L12@xb =

@xxxa+ @xa� 3(a+ bd)
2@xa� �(ad + b� 1)2@xa

� 2�(a+ bd)(ad + b� 1)@xb: (B.6)

As long as that the width of the interfaces is much smaller than the domain
size (for all times t), we can make the following approximations: abd � 0,
aad � a, bbd � bd. Moreover, this assumption implies that the product of
the derivative with respect to x of an amplitude solution centered on x = x0
multiplied by another amplitude shifted a length of order of the domain size,
will be a function which will take values different from zero only in a small
region around x = x0. By using the approximations

(a+ bd)
2@xa � a2@xa;

(ad + b� 1)2@xa � b2@xa;

(a+ bb)(ad + b� 1)@xb � ab@xb;

(B.7)

we find:

(L	y)1 = @x
�
@xxa+ a� a3 � � b2a

�
: (B.8)

Taking the derivative of (2.62) with respect to x we find that the right hand
side of (B.8) is equal to zero when the amplitude solutions a = a

�
x� r(t)

�
and

b = b
�
x � r(t)

�
are replaced by their form for Æ = 0. Hence, we conclude that

(L	y)1 = O(Æ). Likewise, we can prove that (L	y)2 = O(Æ). Therefore, to
lowest order in Æ, (@xa; @xb)T belongs to the kernel of the operator L1.

Now we can calculate the evolution of the domain size L(t) = d � 2r(t)
through the solvability condition (B.5). The result is:

@tL �= �2v(�; Æ) +

Z 1

�1
dx (ha @xa + hb @xb)Z 1

�1
dx [(@xa)

2 + (@xb)
2]

: (B.9)

where the functions ha and hb depend upon the amplitude solutions a and
b and the non-potential parameter Æ. The first term of the right hand side
of (B.9) represents the rate of change of the domain size due to nonpotential
effects which cause the kinks to move at a constant velocity v(�; Æ). The second
term is related to kink interaction. In the case � = 3 we can compute explicitly
all the coefficients involved in (B.9) taking advantage of the analytical kink

1As a matter of fact, the vector (@xad; @xbd)
T also belongs to the kernel of L (to the lowest

order in Æ) as it can be proven analogously. It is straightforward to check that the solvability
condition (B.5) leads to the same results with either of the two vectors.
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profiles to lowest order in Æ [Eq. (2.56)]. Making an expansion in powers
of e�

p
2L(t), retaining only the leading terms, and provided that Æ is a small

parameter, we obtain:

@tL = � Æp
2
� 24

p
2 e�

p
2L(t); (B.10)

which is Eq. (2.63).



Appendix C

Eikonal Equation for the
Busse-Heikes Model

In this appendix we give a proof of equation (2.66) which gives the normal
velocity of an interface (eikonal equation) for the Busse-Heikes model in two
spatial dimensions. The extension of the demonstration to higher dimensions
is straightforward.

Since stable fronts are formed by two varying amplitudes, we only need to
take into account two of the three equations of the model. Let us then consider
a free front with two varying amplitudes Ai(r; t); Aj(r; t). The spatio-temporal
dynamics of these fields is governed by the equations:

@tAi = r2Ai+Ai�A3
i � (� + Æ)AiA

2
j ; (C.1a)

@tAj = r2Aj+Aj�A3
j � (� � Æ)AjA

2
i : (C.1b)

To track the motion of the front it is useful to make a change of coordinates
to an orthogonal coordinate system (u; s) that moves with it. In the vicinity of
the interface, the change of coordinates is defined by (see Fig. C.1):

r(u; s; t) = R(s; t) + u n̂(s; t); (C.2)

where R(s; t) =
�
X(s; t); Y (s; t)

�
is the position vector of the points of the line

front in the laboratory reference frame and r(u; s; t) is the position vector in
the moving frame. The coordinate s is the arclength of the line front while u is
the normal coordinate to the front. The vector n̂(s; t) = Ys x̂�Xs ŷ is the unit
normal vector to the curve, being x̂ and ŷ normal unitary vectors along the X
and Y axis. The subscripts indicate partial derivatives. The Jacobian matrix
of the transformation is given by:

M(u; s; t) � @r(u; s; t)

@(u; s)
=

�
Ys Xs + uYss
�Xs Ys � uXss

�
: (C.3)
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Figure C.1: Schematic of the change of coordinates defined by Eq. (C.2).

The matrix of the metric defined by the change of coordinates is now easily
obtained:

G(u; s; t) �M yM =

�
1 0
0 (1 + u�)2

�
: (C.4)

Here �(s; t) is the local curvature of the front line and we have used the iden-
tities:

�(s; t) = XsYss � YsXss =
p
X2

ss + Y 2
ss; (C.5)
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(C.7)

@

@t
= �vn @

@u
� 1

1 + u�
rt � t̂ @

@s
; (C.8)

where vn = �rt � n̂ is the normal velocity and t̂ = Xs x̂ + Ys ŷ is a unit vec-
tor tangent to the front line. If we assume that the curvature �(s; t) is a
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smooth function of s and t, we can neglect the partial derivatives @s and @t
as compared with @u. With all this, the equations for the fields Ai(u; s; t) and
Aj(u; s; t) in the new coordinate system are

@uuAi +

�
vn +

�

1 + u�

�
@uAi + 1� A3

i � (� + Æ)AiA
2
j = 0; (C.9a)

@uuAj +

�
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1 + u�

�
@uAj + 1� A3

j � (� � Æ)AjA
2
i = 0; (C.9b)

or, equivalently,

@uuAi + vp @uAi + 1� A3
i � (� + Æ)AiA

2
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�
vn � vp +
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1 + u�

�
@uAi; (C.10a)

@uuAj + vp @uAj + 1� A3
j � (� � Æ)AjA

2
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�
vn � vp +

�

1 + u�

�
@uAj; (C.10b)

where vp is the planar front velocity. The curved front solution is of the form2:

Ai(u; s; t) = A0
i (u) + "A1

i (u; s; t) +O("2); (C.11a)

Aj(u; s; t) = A0
j(u) + "A1

j(u; s; t) +O("2): (C.11b)

Here A0
i (u) and A0

j(u) are the planar front solutions and " is a small parameter.
The planar fronts satisfy the equations:
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0
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2 = 0; (C.12a)
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j(A
0
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By comparing Eqs. (C.10a–b) with (C.12a–b) it is clear that for weakly curved
fronts, the quantity vn � vp + �=(1 + u�) must be small. Now, by inserting
(C.11a–b) into (C.10a–b) we arrived, to order O("), at the next set of equations
after absorbing the parameter " in the definitions of A1

i and A1
j :
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(C.13a)
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0
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(C.13b)

2Here we are assuming that a curved front solution can be expanded in terms of a small
parameter ".
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We have assumed that the (small) quantity vn � vp + �=(1 + u�) is of order ".
The previous set of equations can be cast into matrix form:

L� = �0; (C.14)
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0
i
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j

�
:

Due to the translational invariance the operator L is singular, that is, its
nullspace is not empty. It is easy to see that

L� = 0; � = (@uA
0
i ; @uA

0
j)
T (C.15)

Let �y be a vector such that Ly�y = 0. The linear system (C.14) admits a
solution (A1

i ; A
1
j) if and only if its right hind side is orthogonal to the nullspace

of the linear operator L, that is,

(�y;�0) = 0; (C.16)
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�
� � �y = 0; (C.17)

vn = vp �
"R1

�1 du� ��y(1 + u�)�1R1
�1 du� � �y

#
�: (C.18)

If W is the interface width and we assume that � � W�1 (this is equiva-
lent to say that the size of the transformed region is much greater than the
interface width), we can make the simplification:Z 1

�1
du� ��y (1 + u�)�1 = lim

�f!1

Z W=2

�W=2

du� ��y (1 + u�)�1

' lim
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Z W=2

�W=2

du� � �y =
Z 1

�1
du� ��y;

(C.19)

so (C.18) reduces to

vn(s; t; �; Æ) = vp(�; Æ)� �(s; t); (C.20)

which is the desired result. Note that in the derivation of the previous equa-
tion no assumption about the size of Æ has been made.
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Computation of the Angular
Velocity of a Vertex

D.1 Geometrical Approach

Let us consider a curve R(s; t) =
�
X(s; t); Y (s; t)

�
in the (x; y) plane with a

free end at zero arclength as illustrated in Fig. D.1. We call �(s; t) the angle
between the tangent direction to the curve and a fixed direction, say the x
axis. The unit vectors tangent and normal to the curve at a point (s; t) are
given by:

t̂(s; t) = cos � x̂+ sin � ŷ; (D.1)

n̂(s; t) = � sin � x̂+ cos � ŷ: (D.2)

Here x̂ and ŷ are unit vectors along X and Y axis. In a isotropic system, fronts
move in the direction normal to each point. This is stated mathematically as:

dR

dt
= vn n̂; (D.3)

where vn = vn(s; t) is the normal front velocity. The normal propagation elon-
gates or shortens the curve according to the sign of its curvature. As a result
the arclength of the curve varies in time. Using (D.3) we have

dR

dt
=

�
@R

@s

�
t

ds

dt
+

�
@R

@t

�
s

)
�
@R

@t

�
s

= vn n̂� ds

dt
t̂; (D.4)

where we have used the identity t̂ = @R=@s (note that this would not be true
if the curve were not parametrized by the arclength). Taking the derivative
of (D.1) with respect to time, we find

dt̂

dt
=

d�

dt
n̂: (D.5)
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s = 0

R (s, t)

t̂n̂

O

θ (s, t)

Figure D.1: Geometrical representation of a frontR(s; t) with a free end at arclength s = 0.

On the other hand:

d

dt

�
@R

@s

�
=
@2R

@s2
ds

dt
+
@

@t

�
@R

@s

�
t

; (D.6)

@2R

@s2
=

@

@s

�
@R

@s

�
=
@t̂

@s
=

@t̂

@�|{z}
n̂

@�

@s|{z}
��

= �� n̂; (D.7)

@

@t

�
@R

@s

�
t

=
@

@s

�
@R

@t

�
s

: (D.8)

Bringing (D.7) and (D.8) into (D.6) we arrive at

dt̂

dt
=

d

dt

�
@R

@s

�
=

@

@s

�
@R

@t

�
s

� �
ds

dt
n̂: (D.9)

It is easy to see that

@

@s

�
ds

dt

�
= � vn;

d�

dt
=
@vn
@s

: (D.10)

Now

d�

dt
=
@vn
@s

) @

@s

�
d�

dt

�
=
@2vn
@s2

; (D.11)

@

@s

�
@�

@s

ds

dt
+
@�

@t

�
=
@2vn
@s2

) �@�
@s

ds

dt
� �

@

@s

�
ds

dt

�
� @�

@t
=
@2vn
@s2

; (D.12)

and using (D.10) we find

@�

@t
= �

�
�2 +

@2

@s2

�
vn � @�

@s

ds

dt
; (D.13)
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where, according to (D.10)

ds

dt
=

Z s

0

ds0 � vn + ct; ct =

�
ds

dt

�
s=0

: (D.14)

The first term on the rhs of Eq. (D.14) represents the growth rate of the
free end due to normal expansion whereas the second term, ct, is the growth
rate of the free end, or the tangential tip velocity. Eqs. (D.13) and (D.14)
describe front dynamics in an isotropic system and they form the basis of the
geometrical approach.

Now we apply the equation we have just obtained to a steady rotating
spiral front line. In this case we have

@�

@t
= 0; ct = 0; (D.15)

so that Eq. (D.13) transforms into

0 = �
�
�2 +

@2

@s2

�
vn � @�

@s

Z s

0

ds0 �vn: (D.16)

Integration of the previous equation between 0 and s yields (integrating the
last term by parts)

0 = �
Z s

0

ds0 �2vn � @vn
@s

����s
0

� �

Z s

0

ds0 �vn +
Z s

0

ds0 �2vn

) @vn
@s

+ �

Z s

0

ds0 �vn =

�
@vn
@s

�
s=0

=
d�

dt

����
s=0

� !; (D.17)

where !, the integration constant, is just the rotation angular velocity of the
front line around the vertex point. The curvature has to satisfy the boundary
conditions:

lim
s!0

�(s) = �0; lim
s!1

�(s) = 0: (D.18)

These conditions make (D.17) a nonlinear eigenvalue problem for the rotation
rate. For the Busse-Heikes model the normal velocity is given by (2.66), so we
have

~�

Z ~s

0

ds0 ~� (1� �~�) = �
@~�

@~s
+ ~!; � = �0=vp; (D.19)

where ~� = �=�0, ~s = s�0 and ~! = !=(vp�0).
We can find ! either by solving (D.17) directly or by calculating inner and

outer solutions for the curvature. We will follow the latter procedure.
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✦ Inner solution

Near the vertex point we consider a solution for the curvature as a power
series of the arclength ~s

~�(~s) =
1X
i=0

ai ~s
i: (D.20)

Inserting Eq. (D.20) into (D.19) we find:

~�inner(~s) = 1� ~!

�
~s+

1

2

�
1

�
� 1

�
~s2 +O(~s3): (D.21)

✦ Outer solution

Since the curvature is a flat function of ~s for high values of ~s, we may
neglect the term containing the derivative of the curvature on the rhs of
(D.19). On the other hand, as ~� < 1, we can assume thatZ ~s

0

ds0 ~�2 �
Z ~s

0

ds0 ~�: (D.22)

This can be seen by using the expression for the curvature of an
Archimedes’ spiral3. If we call � the polar angle, the following asymptotic
relations hold: Z �m

0

~�(�)
@~s

@�
d� = �m +O(��1m ); (D.23)

Z �m

0

~�(�)2
@~s

@�
d� =

1

2
log(�m) +O(��2m ): (D.24)

We also check the validity of (D.22) by means of numerical integration.
With all these approximations, Eq. (D.19) reduces to:

~�

Z ~s

0

ds0~� = ~!: (D.25)

The outer solution is found by solving (D.25):

~�outer(~s) =

�
~!

2~s

�1=2

: (D.26)

3The polar equation for an archimedean spiral is � = a �1=n. The particular case n = 1
corresponds to the Archimedes’ spiral which is such that the distance between windings is
constant.
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By imposing the continuity of the inner and outer solutions and of their
first derivative in a certain point ~s = s0, we are led finally to

~�inner
��
~s=s0

= ~�outer
��
~s=s0

@~�inner

@~s

���
~s=s0

=
@~�outer

@~s

���
~s=s0

9>=
>; ) s0 =

�
3�

8

�1=2

; ~! =

�
8�

27

�1=2

;

! = (8=27)1=2 v1=2p �3=20 : (D.27)

Now, in order to find the relation ! = 
(vp) one needs to know how the
curvature at the origin �0 is related to the planar front velocity vp. For an
Archimedes’ spiral, Eq. (D.13) evaluated at s = 0 gives vp = 3�0=2 / �0. Hence
(D.27) yields

! / v2p: (D.28)

D.2 Free Boundary Formulations

Other way to work out the rotation angular velocity is by considering the dif-
ferential equation that gives the points of the rotating front line. The location
of the front line of a rotating interface can be represented by

ρ

φ(ρ)

(X,Y)

X

Y

O

X(�) = � cos(�(�) + !t); (D.29)

Y (�) = � sin(�(�) + !t); (D.30)

where
�
�; �(�)

�
are the polar coordinates. The curvature and normal velocity

are given by [159]:

� =
 0

(1 +  2)3=2
+

 

�(1 +  2)1=2
; (D.31)

vn =
!�

(1 +  2)1=2
; (D.32)

where  (�) � � �0(�). The eikonal equation (2.66) then becomes an ordinary
differential equation for the function  :

�  0(�) = (1 +  2)
�
vp �(1 +  2)1=2 � !�2 �  

�
: (D.33)
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When � !1, we have that � ! 0 and vn ! vp. Therefore, for large � we will
have

vp � !�

(1 +  2)1=2
)  � !

vp
� as �!1; (D.34)

that is, the spiral is approximately archimedean far away from the tip. On
the other hand,  must obey the boundary condition

 (0) = 0: (D.35)

Eqs. (D.33), (D.34) and (D.35) constitute an eigenvalue problem for !. How-
ever, some information about this relation can be obtained at once by using
the symmetry transformation f !  , � ! A�, ! ! !=A2, vp ! vp=Ag that
leaves (D.33) invariant. Applying this transformation to ! = 
(vp) with A = vp
one gets

! / v2p: (D.36)

It is remarkably that the curvature at the origin does not appear explicitly in
(D.36) while in expression (D.27) it does.
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Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas,
y Universidad Autónoma de Madrid (CIEMAT-UAM). Enero–Diciembre
1994.

❖ Suficiencia investigadora
Universitat de les Illes Balears. Diciembre 1998.

Experiencia profesional

❖ CIEMAT 2/95–12/95
Investigador del Instituto de Tecnologı́a Nuclear

❖ ENUSA (Empresa Nacional del Uranio, SA) 9/94–12/94
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