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Chaotic Synchronization in Small Assemblies of
Driven Chua’s Circuits

Esteban Sánchez, Manuel A. Matías, and Vicente Pérez-Muñuzuri

Abstract—Chaotic synchronization is studied in experiments
performed on dynamic arrays of Chua’s circuits that are con-
nected by using a recently introduced driving method especially
suited for the design of such arrays. Namely, the driven circuit has
the same number of energy storage elements as the driving circuit.
The experimental results, which are supported by theoretical
analysis, are different depending on the geometric arrangement
of the array. In the case of linear arrays, the first circuit always
imposes its behavior to the rest of the chain at a finite velocity.
Instead, in the case of ring geometries, the chaotic synchronized
state is only stable up to a certain size of the ring. Beyond this crit-
ical size a desynchronizing bifurcation occurs, leading to a chaotic
rotating wave that travels through the array. This instability is
explained by performing an analysis in terms of modes.

Index Terms—Chaotic synchronization, Chua’s circuit, dynamic
arrays, pattern forming instabilities.

I. INTRODUCTION

T HE phenomenon of synchronization among coupled non-
linear oscillators, first studied by Huygens in the 17th cen-

tury, has proven to be rather fruitful in a variety of scientific
fields. One may mention the use of this paradigm in the study
of biological rhythms [1], [2], chemical oscillators [1], [3], ar-
rays of Josephson junctions [4], and arrays of lasers [5].

Less intuitive is probably the finding that chaotic systems can
be also made to synchronize in spite of the sensitive depen-
dence of these systems on the initial conditions. Thus, chaos
has been described as a situation in which a system gets out of
synchronization with itself [6]. However, chaotic synchroniza-
tion was demonstrated by Pecora and Carroll on analog circuits
[7]–[9] by splitting a (response) system in two subsystems, one
of which is held in common with the drive. This work based on
previous theoretical work by Fujisaka and Yamada [10] and Ra-
binovich et al. [11] and experimental work by Volkovskii and
Rulkov [12] that considered the case of linear (resistive) cou-
pling implemented with analog circuits in [13]–[15]. One of the
most important promises of chaotic synchronization, beyond the
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interest of the phenomenon in itself, is that it could be useful
in the field of secure communications [16]–[21] and in spread
spectrum communications [21]. Note, however, that some re-
cent studies have shown that a simple masking scheme may be
easily deciphered [22], [23].

Synchronization is also relevant in biology. Its role has al-
ready been explored in the case of periodic (limit cycle) sys-
tems, e.g., [1]. In addition, recent studies suggest that the brain
may use deterministic chaos in perceptive processes [24]–[26],
while some evidence points to the role of chaos in the behavior
of single neurons [27], [28]. In this representation, the brain
would be chaotic at rest, while perceptive processes would be as-
sociated to transitions to synchronous oscillatory behavior (that
could be related to the 40-Hz oscillations found in the brain of
mammals by physiologists [29]).

We shall concentrate in the behavior of rings of coupled os-
cillators that may be also relevant in a biological context, as in
the case of morphogenesis [30] or in the context of neural sys-
tems. An example of the latter case are central pattern genera-
tors (CPG’s), i.e., assemblies of a small number of neurons that
are capable of providing the necessary rhythm of muscular ac-
tivity even in the absence of external stimuli. These CPG’s, that
may operate independently from the brain, have been studied
in some degree of detail for a few lower animals, e.g., lobsters
[31]. In the study of CPG’s the important points to be consid-
ered [28] are the dynamics of the isolated neurons, e.g., periodic
or chaotic, the interaction between the oscillators, and the way
in which information is processed. An important aspect is that
the resulting spatio-temporal patterns can be analyzed through
symmetry arguments [32] that allow one to study the different
possible behaviors, stemming from symmetry breaking bifur-
cations, and the transition between different types of gaits has
been explained in this way by considering a model formed by a
ring of coupled oscillators [33], [34]. A different point of view
is that these arrays can be also discussed in the framework of
cellular neural networks (CNN’s) [35], [36]. Thus, it is possible
to foresee applications of these networks as information pro-
cessing units.

One of the most quickly acknowledged features of neural sys-
tems is the unidirectional character of information transmission
in these systems. In the field of chaotic synchronization a first
approach along these lines is the driving method introduced by
Pecora and Carroll (PC). In the present contribution we shall
implement experimentally the method introduced in [37] and
[38] in the case of arrays of Chua’s circuits. A useful feature
of this approach [37] is that the dynamical evolution of the vari-
able in the response circuit that corresponds to the driving signal
is not suppressed. Thus, the result of a single connection does
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the same function as a cascade within the original PC scheme,
while it is guaranteed that the response circuit is homologous to
the drive circuit (in the electronic implementation this implies
that the circuits are identical). This useful property also has the
advantage of allowing us to design different types of networks
with different geometries of arrangement, because the dimen-
sionality of the circuit is not reduced.

The aim of the present work is to explore the behavior of ar-
rays of Chua’s circuits in two types of arrangements, namely,
linear arrays and rings. In the first case, the result is that syn-
chronization propagates through the array through a synchro-
nization wave. More interesting, perhaps, is the case of rings,
as in this case the chaotic synchronized behavior cannot be sus-
tained for arbitrary sizes of the system. Thus, one finds that for a
given size of the system, there is a critical size beyond which an
instability that destroys synchronization appears. The behavior
of the system past the instability, which had not been reported
before, consists of a rotating wave with chaotic amplitude that
travels through the array.

II. EXPERIMENTAL SETUP AND MATHEMATICAL MODEL

In the context of the present work we have built an experi-
mental setup composed of six Chua’s circuits operating in the
chaotic double-scroll regime. The dynamical evolution of an
isolated circuit (see, e.g., [39]) can be characterized by the fol-
lowing set of differential equations:

(1)

where the variables and are the voltages across the two ca-
pacitances, and and is the current passing through the
inductor that has an internal resistance. is the resistance
that couples and and the whole circuit is kept active by a
suitable nonlinear element that, in the case of a single circuit, is
driven by the voltage across . This element is character-
ized by its negative conductance curve (see, e.g., [39]), defined
by

(2)

where and are the voltages corresponding to the two
breaking points, is the conductance for , while

is the conductance for ( V in our circuit).
The Chua’s circuits that we have studied experimentally, in

both linear and ring geometries, are characterized by the fol-
lowing values of the electronic components: (
= (10 nF, 100 nF, 10 mH, 20 1100 where one should take
into account the tolerances of the available discrete components
(10% in the case of the inductances, 5% in the case of the ca-
pacitances, and 1% in the case of the resistances). The slopes of
the nonlinear element (2) are defined by S and

S, respectively. The circuits have been sampled
with a digital oscilloscope (Hewlett-Packard 54 601B) with a

maximum sample rate of 20 million samples per second, with
eight-bit A/D resolution and a record length of 4000 points.

The circuits are connected through unidirectional driving,
such that the voltage across capacitor of a given circuit,
say , is used to drive the nonlinear element of the next
circuit, . This is not the only possible connection resulting
from the application of the method of [37] that is stable from
the point of view of synchronization, but it can be shown that
the other two stable connections reduce to cascades resulting
from the application of the PC method.

This coupling implies the following evolution equations for
the th coupled circuit in the array:

(3)

with and where coupling enters in the nonlinear
element as the corresponding term, is not driven, in
principle, by the voltage across capacitor of the th circuit,
but by the voltage across capacitor of the th circuit,

for . The value of for depends
on the geometry of the arrangement, and it is for
linear arrays and for rings.

This way of coupling implies a generalization in the design
of the nonlinear element in Chua’s circuit. The reason is that
in the usual implementation of Chua’s circuit (see, e.g., [40])
the nonlinear element is simply a negative-sloped nonlinear re-
sistor that, as can be seen from (1), has as argument the
voltage of capacitor that is physically attached in parallel
with the nonlinear resistor. Instead, looking at (3) it is clear that
now the nonlinear element has as an argument a voltage that is
different to the voltage across its extremes. Thus, this function
must be realized by using a voltage controlled current source
(VCCS) that produces the required current stemming from the
nonlinear characteristic, as imposed by Kirchhoff’s laws. The
voltage taken at capacitor of a given circuit is used to drive
the nonlinear element in the next circuit. The implementation of
the nonlinear element that has been used in the present work is
explained in more detail in the Appendix (see also Fig. 1).

In the work reported here, simulations have been carried out
by numerically integrating the evolution equations (3) while,
later, more realistic simulations have been performed by using
SPICE [41] with accurate models of the electronic devices. In
all cases there is a perfect agreement between the different levels
of simulations, thus indicating that the suggested circuit repre-
sents the electronic implementation of (3). The behavior of the
experimental setting is also in agreement with the simulations.

III. RESULTS

A. Linear Arrays of Chua’s Circuits

This type of geometry is characterized by the dominance of
the first circuit in the array that will ultimately impose its be-
havior to the whole system. This implies that the asymptotic be-
havior of the system will be synchronized chaos. In [42] it was
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(a)

(b)

Fig. 1. (a) Schematic representation of a Chua’s circuit, sayk in the array, coupled to its neighbors according to (3). (b) Schematic representation of the nonlinear
element, introducing the third terminal needed to implement the coupling.

shown that chaotic synchronization occurs as a synchronization
wave spreads through the medium. The velocity of propagation
of this wave was shown to depend linearly on the largest trans-
verse Lyapunov exponent for a drive-response couple. This im-
plies that chaotic synchronization happens consecutively as two
contiguous circuits become synchronized (see, however, [43]).

The time needed to achieve synchronization depends on the
initial conditions, but the asymptotic state (attained only in the
limit when time tends to infinity) will always be synchronized
behavior, i.e., with no phase lag between contiguous circuits.
This is at variance with what happens with resistive coupling
[15], [44] where a phase difference between contiguous cir-
cuits that depends on the initial conditions is observed. At first
sight, the fact that the whole array ultimately exhibits synchro-
nized chaotic behavior would appear to contradict the predic-
tions stemming from the work in [45] and [46]. By using very
simple considerations, these authors showed the impossibility
of finding stable uniform chaotic behavior for systems above a
certain critical size. However, if the coupling is unidirectional,

as in our case, it can be shown that the chaotic uniform synchro-
nized state will be stable (see, e.g., [47] and [48]).

Now, we shall show that, indeed, what is observed is that all
the circuits in the array become synchronized with the first one,
that exhibits the well-known Chua’s double-scroll chaotic at-
tractor (see Fig. 2). A phase portrait of this attractor can be found
in Fig. 2(b) (the voltage across capacitor is plotted versus
the voltage across capacitor ). In turn, in Fig. 2(c) for
the sixth circuit, i.e., , is represented versus the same quan-
tity corresponding to the first circuit, . Synchronization is
expressed by the straight line relationship , although
the line has some thickness due to the fact that the circuits are
not completely identical.

Synchronization implies a collapse of the dynamics of the
array from the compound phase space of all the interacting
systems to a low-dimensional invariant manifold, that, in
principle, is characterized by the equality of all the variables
of the system while the behavior of the system is chaotic. A
convenient way of analyzing the stability of this situation is
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(a)

(b)

(c)

Fig. 2. Experimental results for a linear array of six Chua’s circuits coupled according to (3). (a) Time series ofV in two contiguous circuits, i.e.,V andV
versus time. (b) Phase plane of the two voltages for the first circuit, i.e.,V versusV . (c) Representation of the voltageV for the last circuit versus the same
quantity for the first one, i.e.,V versusV . The parameters of the circuit (1–2) are:(C ;C ; L; r ; R;G ;G ) = (10 nF; 100 nF; 10 mH; 20
; 1100
;
�8=7000 mS; and�5=7000 mS).

by considering separately the behavior of small perturbations
within this invariant manifold from the behavior of small
perturbations transverse to this manifold. The linearized
evolution analysis of these perturbations, that amount to

differences between the synchronized systems, yields the
concept of transverse Lyapunov spectrum.

In [37] it was shown that for a pair of connected sys-
tems this spectrum can be obtained by setting to zero
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the entries corresponding to the connections, i.e., to the term
in which the driving signal enters. Thus, if one considers the
linear stability matrix of an isolated Chua’s circuit

(4)

then, for the connection corresponding to driving the nonlinear
element with the voltage across the capacitor of the
previous circuit, i.e., (3), the transverse Lyapunov spectrum
is obtained by considering the matrix in which the term
corresponding to is set to zero. In this case, this yields a
completely linear problem and it is not necessary to take the av-
erage when time goes to infinity, but simply the real part of the
eigenvalues. The transverse Lyapunov spectrum corresponding
to a drive-response pair of Chua’s circuit coupled in the form
given by (3) is [ 0.1570, 0.1570, 10.9059] where the fact
that the three exponents are negative shows the stability of the
connection.

B. Rings of Chua’s Circuits

This way of arranging the chaotic circuits leads to a different
behavior of the array. The basic reason is that in this case the
kind of arguments advanced in [45] and [46] apply. These au-
thors discussed the stability of the mean field approximation
to the system in the limit of infinitely many interacting units,
also called the thermodynamic limit, concluding that if the uni-
form state is chaotic it should be unstable to small perturbations
having some characteristic length. In the case that we are consid-
ering here, rings of chaotic electronic oscillators, another form
of stating these results is to say that the uniform synchronized
state of these rings will be unstable when that the number of cir-
cuits in the ring exceeds a certain threshold.

This instability recently has been analyzed in [49] for the case
of rings of Chua’s circuits through theoretical analysis and con-
firmed by numerical simulations. In essence, the idea is that the
circulant structure of the ring allows to cast the linear problem,
that results when one studies the evolution of small perturba-
tions to the synchronized state, in a particularly simple form
through the use of the discrete Fourier transform. Thus, the
study of a ring composed out of Chua’s circuits would yield a
quite cumbersome -dimensional problem, but the
circulant symmetry of the arrangement allows us to write the
problem as the superposition of Fourier modes that
takes the form [49], [50]

(5)

where is the Fourier transform of the Jacobian of the flow,
taking the form

(6)

where is the Fourier transform of and
are the Fourier modes.

In this framework, the uniform synchronized state of the ring
corresponds to the Fourier mode with the longest wavelength,
i.e., . The stability condition of this mode to arbitrary
perturbations is that the Lyapunov transverse spectrum corre-
sponding to the modes be negative. On the
other hand, the condition to be fulfilled such as to have chaotic
temporal dynamics is that the Lyapunov exponent of the
mode is positive. This fact allows to argue in a simple way that
the spatially homogeneous and temporally chaotic state cannot
be stable for arbitrarily large sizes of the array (in agreement to
the ideas in [45] an [46]). An alternative way of phrasing these
arguments in our case is that if we define the continuous vari-
able , the function , representing the largest Lya-
punov exponent of the system, will be continuous. On the other
hand, as we are considering a synchronizing connection,
will be typically negative for some, normally for ,
which corresponds to Then, the continuity of the
function implies that for some critical value and
the shape of implies that those wavenumbers that corre-
spond to will have a positive transverse Lyapunov
exponent, indicating an instability that will destroy the chaotic
synchronized state (see also [51] for another exposition of this
simple argument). Thus, the difference between nonchaotic and
chaotic dynamics is that, although in the first case an instability
may occur, it is guaranteed to appear in the case that the uniform
dynamics is chaotic (in the nonchaotic case .

The implication of this fact for the case of coupled circuits
is that the instability must occur for some finite size. If we
consider the mode, which will be the one in which the
instability will appear first, this critical size will be the first in-
teger that obeys . If one is considering a value of

in the context of the linear stability theory, these per-
turbations should grow as with Notice the
resemblance of this instability of the synchronized state with the
Turing instability [30] (see also [52] and [53] for a discussion
in the context of electronic circuits), although in this case the
type of coupling is completely different. For other studies on
coupled oscillator systems with periodic boundary conditions
that exhibit instabilities in their uniform synchronized state, one
may mention studies on coupled periodic oscillators such as the
studies on coupled Josephson junctions [54], phase locked loops
[55], and other systems [56], while there are a few studies of in-
stabilities in coupled chaotic oscillators [50], [57], [58], [51],
[42], [43], [49], [59], [60].

A useful way of characterizing the stability of rings of circuits
and of determining the critical size at which the uniform chaotic
synchronized state becomes unstable is to determine the largest
Lyapunov exponent as a function of [49]. In
this work we have calculated this quantity by extending Wolf’s
method [61] to the case of vector spaces over the complex field.
The complex character of the vectors comes from the presence
of the th root of unity in (6). In principle, and due to the stabi-
lizing nature of the connections, one expects that
while the value for which signals the onset of
the instability. We have determined as a function of (see
Fig. 3) from which the critical value of has been determined
to be . This implies that the Fourier mode with the
shortest wavelength, becomes unstable for a size for
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Fig. 3. Representation of the largest Lyapunov exponent�(q) as a function ofq = k=N , i.e.,�(q) versusq (see text).

which is fulfilled, i.e., for the smallest
value for which which, in our case, is .

To study experimentally the issue of the stability of the
chaotic synchronized state we have built rings of Chua’s
circuits with different sizes, coupled as explained in Section III.
It is striking that the experimental results are in very good
agreement with the theoretical predictions. Thus, Figs. 4 and
5 contain experimental results corresponding to rings with
different numbers of coupled Chua’s circuits, namely, five and
six. The observed behavior shows clearly that for the
synchronized state is stable, while it becomes unstable for

. This critical value is very dependent on the actual
values of the electronic components for the values
of the parameters employed in [49]). Before the onset of
instability the relationship between voltages across the same
capacitor corresponding to contiguous circuits is the
straight line corresponding to perfect synchronization.

The behavior of the system for , i.e., immediately past
the instability, can be characterized by looking at the simulta-
neous representation of the voltages across one capacitor, say

, versus time for the six circuits [see Figs. 5(a)–6(a)]. One
can see that the voltages differ by an almost constant phase,
while their amplitudes appear to be modulated by a wave with
a smaller, apparently aperiodic, frequency. By analogy with the
behavior of beat linear waves one could refer to this behavior
with the name of aperiodic beat waves. The underlying aperiod-
icity in the basic waveform accounts for the plot of two of these
voltages [see Figs. 5(b)–6(b)]. One obtains a kind of ergodic
Lissajoux figure in a region of state space, indicating a phase
relationship between these voltages. An interesting point is the
almost perfect coincidence that one finds after comparing the
experimental results with realistic SPICE simulations (shown in
Figs. 5–6) and also with the results obtained by numerical inte-
gration of the evolution differential equations (not shown here:
see [49]).

Another interesting property of the behavior of the circuits
past the instability is that the shape of the usual double-scroll
attractor is changed. This is already apparent from the shape of
a time series corresponding to but can be more clearly seen
when one considers the state-space plot ofversus for the
same circuit [see Figs. 5(c)–6(c) and compare it with Fig. 4(b)].
In an isolated Chua’s circuit, the trajectories spirals out from
a focus in each scroll. Instead trajectories wander around the
two foci in a less ordered way, describing ellipses. From these
figures we can see that the way trajectories describes around
attractors in one circuit is conditioned by the behavior of the
previous circuit.

For larger sizes, the behavior is different because the insta-
bility causes the unstable mode to grow to infinity. In practice
this is not possible as long as the signals are limited by the power
supply ( 15 V, 15 V). Instead of going to infinity, trajectories
in state–space describe a big limit cycle similar to the one de-
scribed in [62]. The interesting feature is that here one has a ring
of limit cycle oscillators with a phase shift of In some
sense one can consider that the ring exhibits some sort of gener-
alized chaotic synchronization [63] for sizes above the critical
number of circuits.

IV. DISCUSSION

In the present work we have considered the synchronization
of chaotic Chua’s circuits along the lines of the method recently
introduced in [37], a generalization of the PC synchronization
method [7], in which synchronization is achieved through the
injection of a signal coming from a drive system into a precise
place of the response system to be synchronized. The feasibility
of the method discussed here has been proven through its exper-
imental implementation in terms of Chua’s circuits, combined
with realistic simulation of the circuits through SPICE, numer-
ical integration of the evolution equations obtained by straight-
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(a)

(b)

Fig. 4. Experimental esults for a ring of five Chua’s circuits coupled according to (3). (a) Time series of the voltage in two contiguous circuits, i.e., V andV
versus time. (b) Phase plane of the two voltages of one circuit, i.e.,V versusV . Note that in this case the ring is below the onset of instability.

forward application of Kirchhoff laws, and some analytical rea-
soning. In the case of Chua’s circuit, the method of [37] suggests
a new synchronizing connection that cannot be expressed as a
cascade of PC connections. It consists of the use of the voltage
across the capacitor in parallel with the nonlinear element of one
circuit to drive the response circuit. From the electronic point of
view this implies the implementation of the nonlinear element
in a different way compared to the usual one [40] (for further
details see the Appendix).

We have considered arrays making use of these unidirectional
connections in two different arrangements: linear arrays and
rings. The different boundary conditions impose quite different
behaviors in these two settings. In the case of linear arrays the
result is that the first array of the circuit imposes its behavior,
i.e., dictated by its initial conditions, on the rest of the array in a
finite time. This time depends linearly on the number of connec-
tions in the system multiplied by the synchronization time, the
time needed by a pair of circuits to synchronize. The kind of syn-
chronized behavior that is obtained is such that all circuits are
doing the same after synchronization is achieved, i.e., they do
not differ in phase. In this sense, this differs from what one ob-
serves in the case of resistive coupled arrays of Chua’s circuits
[15], [44], in which a phase difference is found that depends

on the initial conditions. The process of synchronization can be
viewed as a constant velocity wave, called the synchronization
wave, that propagates through the array. The velocity of this
wave depends linearly on the largest transverse Lyapunov ex-
ponent of the connection.

This wave has different properties compared to other types
of waves. Thus, in contrast with the case of classical waves in
linear systems or autowaves in dissipative media [64], chaotic
synchronization waves may carry information in a finite time
through an array of cells. This information could be encoded
through changes in the initial conditions at unit , which
will define different outputs at the opposite side of the array

for a time longer than where is the velocity
of this wave. In particular, the study of the properties of this
synchronization wave may shed some light in understanding the
transmission of signals in CNN’s [35] that can be used for image
processing.

In the case of rings, the qualitative behavior of the system is
different as the uniform synchronized state of the system be-
comes unstable for some critical number of circuits in the ring
[49]. This instability has been characterized by using a linear
stability theory for small perturbations to the uniform chaotic
synchronized state of the ring. The circulant symmetry of the
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(a)

(b)

(c)

Fig. 5. Experimental results for a ring of six Chua’s circuits coupled according to (3). (a) Time series of the voltage of capacitor in four contiguous circuits, i.e.,
V ; V ; V ; V versus time. (b) Representation of voltages in two contiguous circuits one versus the other one, i.e.,V versusV . (c) Phase plane of the
two voltages of one circuit, i.e.,V versusV . Note that in this case the ring is above the onset of instability.

problem allows us to transform the linear stability problem
of the whole ring to the superposition of a set of Fourier
modes. The first Fourier mode, that implies correlations along
the whole ring, becomes unstable when the size of the array
grows as Fourier modes with progressively shorter wavelengths
become unstable (in the order In this example,

the instability occurs through some sort of chaotic rotating
wave, such that contiguous circuits differ by a phase equal
approximately to the period divided by the number of circuits
in the system. Of course, this period is not constant (and thus is
not a period in the strong meaning of the word). Here it serves
to characterize the average distance between peaks [49]. When
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(a)

(b)

(c)

Fig. 6. Results from SPICE simulation for a ring of six Chua’s circuits
coupled according to (3). (a) Time series of the voltageV in the six circuits. (b)
Representation of voltages in two contiguous circuits one versus the other one,
i.e.,V versusV . (c) Phase plane of the two voltages of one circuit, i.e.,
V versusV : Note that in this case the ring is above the onset of instability.

the instability is stronger (bigger sizes) the behavior is not
chaotic but periodic and all of the circuits in the ring describe a
large limit cycle with a constant phase shift between them.

Regarding future possible extensions of the present work, one
may mention the study of two-dimensional (2-D) arrays [62],

[65], [66] case in which different connections between the in-
dividual units could be considered. These 2-D networks offer a
discrete representation of spatially extended systems formed by
chaotic units that, in the case of excitable media, have already
been shown as very useful in the study of a great number of inter-
esting spatio-temporal phenomena [52]. In addition, as we have
already remarked, these arrays can be regarded as a generaliza-
tion of CNN’s [35], [36], usually based on cells with bistable
dynamical behaviors. The difference with these CNN’s, which
have already been shown to be able of sustaining a rich range
of spatio-temporal patterns [52], [53], is the type of coupling
between the cells. Chaotic CNN’s offer some promise in ex-
plaining experimental findings in biology in light of Freeman’s
suggestion of chaotic activity in the brain [24]. It is also inter-
esting to mention the appearance of spatio-temporal structures
in three-dimensional 3-D networks in which the type of cou-
pling used in the present work is used [67].

APPENDIX

DETAILS OF THE ELECTRONIC IMPLEMENTATION

The evolution equations defining the coupled array (3) imply
that the nonlinear characteristic of Chua’s circuit is driven by
voltage that is different from the voltage across the extremes
of the capacitor of the circuit, say , while it is taken from cir-
cuit Thus, it is necessary to implement an electronic com-
ponent that is able to carry out this function, i.e., a voltage-con-
trolled current source. In the usual implementation of Chua’s
circuit by using op-amps [40] two terminals connected in par-
allel with capacitor are used and across these terminals flows
a current that is determined by the voltage.

Instead, in the method implemented for the present study it
is necessary to have a third (input) terminal, as the voltage that
drives the nonlinear element may come from a different Chua’s
circuit. Having this goal in mind, the nonlinear element shown
in Fig. 1 has been built. It implements a voltage-controlled cur-
rent source in three steps. The first step is formed by operational
amplifier U1 (a buffer) that guarantees that one takes just voltage
and not the current from capacitor of the Chua’s circuit that
is acting as the drive of the present circuit. Thus, the aim of
this step is to be sure that the coupling is unidirectional. The
second step serves to generate the two slopes,and [40]
of the nonlinear characteristic of the circuit. More
precisely, op-amp U2 and resistances and generate a
constant negative slope in the range between10 V and 10 V,
while op-amp U3, resistances and , and diodes D1 and
D2 generate a negative slope in the range between1 V and 1 V,
while it is saturated outside this range. Then, op-amp U4 and re-
sistances and perform the operations of summing these
two voltages and yielding a currentproportional to this sum.
This current flows between the out terminal of the U4 op-amp
and the inverting terminal that acts as a virtual ground. Note that
this virtual ground will be different for each Chua’s circuit in the
array, although every op-amp is referenced to the ground of the
whole setting, thereby ensuring that all virtual grounds have the
same potential.
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