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Interaction of chaotic rotating waves in coupled rings of chaotic cells
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Abstract

The interaction of two chaotic rotating waves of the type recently reported by Matı́as et al. [Europhys. Lett. 37 (1997) 379]
is studied experimentally with arrays of non-linear electronic circuits arranged in ring geometries. Unidirectional coupling is
assumed for the cell-to-cell coupling within the same ring, but between rings, cells are coupled diffusively. Depending on the
relative sense of driving, competition between a rotating chaotic wave and a global synchronized state has been observed. The
results are rationalized by means of a linear stability analysis around the uniform synchronized behavior, where the circulant
symmetry of the system allows to express the problem as a superposition of a series of Fourier modes. ©1999 Elsevier Science
B.V. All rights reserved.

PACS:05.45.+b; 47.20.Ky; 03.40.Kf; 84.30.Bv

1. Introduction

The present work continues our research line on pattern formation arising from instabilities in the uniform
synchronized state of small assemblies of chaotic non-linear analog oscillators [1–4]. In particular, in [2] we found
that N Chua’s oscillators, coupled unidirectionally by using a method introduced in [5] as a generalization of
Pecora–Carroll synchronization through driving method, and with a ring arrangement, develop an instability that
leads to the appearance ofchaotic rotating waves, that are characterized by a chaotically varying amplitude and an
approximate phase relationship between neighbor oscillators of 2π/N . Moreover, in [4] we were able to confirm
experimentally the existence of this new type of waves, that are complex spatio-temporal structures that form in a
discrete medium [6] with local chaotic dynamics. In the present contribution, we shall consider the situation in which
there are two such rings (where coupling goes unidirectionally) that are transversally coupled (bidirectionally). The
result is a complex interaction between the chaotic rotating waves in each ring, that we analyze through a linear
stability analysis.
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Rings of coupled (discrete) cells are relevant in the study of some physiological and biochemical systems. Thus,
one has the seminal work by Turing [7,8], who used this kind of system in his proposal of a plausible model
of morphogenesis. Later, this kind of models were used to study slow-wave activity in the mammalian intestine
[9]. More interesting, perhaps, is the interest on these systems in the context of neural systems, namely in the
context of central pattern generators (CPGs) [10]. These are networks of neurons in the central nervous system
capable of producing an autonomous rhythmic output (breathing, walking, running, etc.), i.e., without making use
of sensory feedback with the corresponding moving organ. Although current neurophysiological techniques are
unable to isolate such circuits among the intricate neural connections of complex animals, there are some strong
indirect experimental evidences (see, e.g. [11–13]). Moreover, rings of coupled electronic oscillators, CPG-like,
are an interesting method in the design and control of legged robots, because they produce a variety of phase
relationships in a stable and natural manner [14]. An interesting study is that of Collins and Stewart [15,16] who,
in the case of animals with a small number of legs, obtained the patterns of oscillations (i.e. the gaits) used by
these animals in their locomotion [17]. They did so by analyzing the periodic states that arise through a symmetric
Hopf bifurcation [18] from the trivialstandgait and by using simple symmetric networks of coupled identical
cells.

Although rings are a useful way of implementing CPGs, it happens that one cannot obtain all the gaits (phase
relationships) from a single ring of coupled oscillators, whose symmetry, connectivity, etc. are fixed. Thus, it
is natural to think about extending the simplest ideas by considering more complex networks of coupled os-
cillators. A possible extension consists of assemblies of 2N identical oscillators in which the CPG is com-
posed out by two rings, where oscillators within a ring have identical unidirectional coupling, while the two
rings are coupled transversally by a different type of coupling (bidirectional). In this way one has probably a
more realistic representation of CPGs of bilaterally symmetric animals, that, hopefully, will describe more ac-
curately locomotion in these animals. Among the studies of CPGs similar to the one we are studying here one
can mention the study of Collins and Stewart [15], who considered two coupled rings each comprising three
oscillators and that of Ermentrout and Kopell [19]. A recent important study related to our work was carried
out by Golubitsky et al. [20], who proposed a modular symmetric network consisting of two mutually cou-
pled rings, each one made of 2N identical cells coupled unidirectionally to reproduce the phase relationships
found in gaits of a 2N -legged animal. In addition, one could consider more complex networks, where one can
mention the modeling of the human colon in [21], which consists of 33 symmetrically coupled three-membered
rings.

In studying and modeling CPGs one has to consider not just the topology and detailed form of connections but
also the local dynamics of the oscillators. Although most of the studies [15,16,20] consider a quiescent or periodic
local dynamics, it is important to recall that experiments performed in recent years indicate that normal activity
of a single, i.e. isolated, neuron is deterministic chaos [22–24]. Leaving aside questions of the type of how this
internal chaotic dynamics manifests in a CPG as a periodic (or, at least, more regular) behavior, in the present work
we extend our previous studies [1,2,4] in which we studied rings of chaotic oscillators with unidirectional coupling
to the case of two rings that are coupled transversally through resistive, i.e. diffusive, coupling. In particular, we
shall study non-linear electronic (analog) oscillators capable of chaotic behavior as a simplified representation
of the local (neuronal) dynamics. Analogously to what happens in the case of single rings [2,4] the behavior of
the system is synchronized chaos below a certain parameter value and/or system size, while a desynchronizing
bifurcation occurs above some threshold. In particular, in the case of the oscillators that we are considering a chaotic
rotating wave that travels through the system appears. As this structure appears in each ring, our study will consist
mainly in the interaction of these structures between the two rings, interaction that leads to richer spatio-temporal
structures.



226 I.P. Mariño et al. / Physica D 128 (1999) 224–235

2. Experimental results

Experiments have been performed with two boards each one containing up to six Chua’s circuits [25] in the chaotic
regime, according to the design introduced in [4,26]. The components of the circuits are defined by parameters
C1, C2, L, r0 andR whose values are 10 nF, 100 nF, 10 mH, 20�, 1.1 k�. The circuits were sampled with a digital
oscilloscope (Hewlett-Packard 54601) with a maximum sampling rate of 20 million samples per second, 8 bit A/D
resolution, and a record length of 4000 points. The six circuits of each board were connected unidirectionally through
driving [4,5] and in a ring geometry, i.e., the arrangement is such that the last circuit drives the first one. Besides,
both rings were connected, cell-to-cell, through resistances,Rc, from theC1 capacitors of the corresponding cells,
leading to a diffusion term in the potential differences [6]. Numerical simulations with Spice [27], where a detailed
description of the non-linear element is implemented were used to complete the experimental results.

The evolution equations for a single circuit in the whole setting can be obtained from the application of Kirchhoff’s
laws in the form,

C1
dV i

1,j

dt
=

V i
2,j − V i

1,j

R
− g(V i

1,j ) +
V i+1

1,j − V i
1,j

Rc
,

C2
dV i

2,j

dt
=

V i
1,j − V i

2,j

R
+ I i

L,j ,

L
dI i

L,j

dt
= −V i

2,j − I i
L,j r0, (1)

with j = 0, . . . , (N − 1) runs over the number of elements in the ring, and wherei = 0, 1 runs over the number
of coupled rings. Coupling within each ring enters in the non-linear element, as the corresponding term,g(V1,j ),
is not driven, in principle, by the voltage across capacitorC1 of thej th circuit, but by the voltage across capacitor
C1 of a different circuit of the same ring. The precise driving circuit depends on the type of coupling, as we have
found this ordering more convenient in the theoretical treatment to be discussed later.

Two different configurations of the setup have been analyzed in the present work: (1) cells within a ring were
unidirectionally coupled in the same direction (parallel coupling); (2) cells within a ring were unidirectionally

coupled in opposite directions (antiparallel coupling). Thus, for parallel couplingV i
1,j = V i

1,j−1, for bothi = 0, 1,
while for antiparallel coupling this voltage will be different for the two rings: for one of them, sayi = 0, it has

the same value, i.e.,V 0
1,j = V 0

1,j−1, while the other one getsV 1
1,j = V 1

1,j+1, where the operations inj indices are
moduloN and ini indices are modulo 2. Besides, only the limit of strong coupling between rings will be studied
here.

For weak coupling, rotating waves do not see each other, and the observed behavior corresponds to two non-
interacting waves. Fig. 1 shows the chaotic rotating wave that develops in each ring when uncoupled, and that
corresponds to the observed waves for a single ring [2,4]. This wave can be characterized by looking at the simulta-
neous representation of the voltages across one capacitor, sayC1, versus time for several consecutive circuits Fig.
1(a). This allows to see thefingerprint of these waves more clearly: they are waves where one has a modulated
envelope, with an aperiodic frequency, indicating the superposition of several modes, that includes waves with an
approximate phase relationship of 2π/N , with N the number of oscillators, that is six in our case. In turn, Fig. 1(b)
contains a representation of the voltages across capacitorC2 corresponding to two contiguous circuits in the same
ring, while in Fig. 1(c) the voltage across capacitorC1 is represented versus the voltage across capacitorC2, both
corresponding to the same circuit. This rotating wave within each ring will be the initial state before coupling in the
subsequent studies.
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Fig. 1. Experimental results for a ring of six Chua’s circuits unidirectionally coupled. (a) Time series of the voltage at the capacitorC1 in four
contiguous circuits; (b) representation of voltages at capacitorsC2 in two contiguous circuits one as a function of the other one and (c) phase
plane of the two voltages at both capacitors of one circuit.

The observed behavior is that lateral (resistive) coupling introduces a further instability that, in the simplest case,
i.e., two parallel rings, yields a transition between synchronized behavior between the two rings and desynchronized
behavior. In both cases, each ring exhibits a chaotic rotating wave behavior. In a way the behavior is quite predictable:
for values ofRc < Rth (strong coupling), the two chaotic rotating waves synchronize with each other, while for
values ofRc > Rth (weak coupling) the two rotating waves become just uncorrelated to each other. This means that
synchronization implies that homologous circuits, i.e., those circuits, one from each ring, that are coupled directly
through a resistance are synchronized to each other, but exhibit the well-known 2π/N phase relationship with
neighboring circuits. Or, in other words, what one gets in the strong coupling limit is a reduction in dimensionality
of the behavior of the 2N -sized ring in state space (of dimension 6N ): it collapses to a synchronization manifold
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Fig. 2. Double-scroll synchronization for two rings in opposite sense of driving diffusively coupled cell-to-cell forRc = 1�. (a) Phase plane of
two voltages at both capacitors of one circuit showing the classical Chua’s double-scroll chaotic attractor, (b) representation of voltages at the
same capacitor for two contiguous circuits of the same ring and (c) for opposite rings.

corresponding to a chaotic rotating wave for theN -sized ring (of dimension 3N ). In this context, the coupling
resistanceRc plays the role of the inverse of the diffusion or coupling coefficient.

Quite different (and much richer) is the observed behavior for rings arranged in antiparallel sense. Thus, in the case
of strong coupling all the circuits become synchronized and exhibit the well-known Chua’s double-scroll chaotic at-
tractor behavior (of course, the transition occurs atRth value that is different to the one found for parallel rings). Thus,
in this case the synchronization manifold has dimension 3. A phase portrait of this behavior,V2 versusV1 for a given
circuit, is shown in Fig. 2(a), while in Fig. 2(b–c) we have represented voltage across capacitorC2 for two contiguous
circuits in the same ring and for two directly coupled circuits of different rings, respectively. Synchronized behavior
can be deduced from they = x characteristic behavior, although with some thickness due to the fact that the circuits
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Fig. 3. Disturbed double-scroll chaotic attractor obtained for a value ofRc = 27�. (a) Phase plane of two voltages at both capacitors of one
circuit showing the transition from a double-scroll chaotic attractor to a chaotic rotating wave and (b) representation of voltages at the same
capacitor for two contiguous circuits of the same ring. Notice that the captured image presented in panel (a) is a genuine effect and not a technical
feature of the oscilloscope (see the label RUN in the right-top of the panel).

are not identical and also to the resistive coupling between circuits of different rings. When comparing to the case of a
single isolated ring, antiparallel coupling delays the appearance of the instability in the two rings, that lead to a chaotic
rotating wave.

The behavior changes asRc is increased, basically because the globally synchronized double-scroll behavior
loses stability whenRc is changed in this way. The fact that the uniform synchronized chaotic state is stable implies
that the corresponding transverse Lyapunov spectrum (TLS) must be negative [28]. However, even when the largest
transverse exponent is negative (although close to zero) interesting phenomena may occur [29], as during short
periods of time it may become positive (this exponent is guaranteed to be negative only in the asymptotic limit).
In particular, the behavior that we get in our system is very close to an on–off intermittency [30], that in our case,
manifests in that the double-scroll attractor appears to bealive andbreath. The system is subject to perturbations,
not withstanding which, they are not able to induce a transition to a different behavior. This type of situation can
be observed in Fig. 3(a–b) . Notice the coexistence in time of both kinds of attractors, namely, the double-scroll
and the rotating wave shown in Fig. 3(a). The most striking aspect of this behavior is that typical lifetimes of each
of the two transient states may be up to a few minutes, what is quite uncommon in this type of electronic analog
circuits, with usual characteristic times of the order of the milliseconds. However, the transition itself is very fast.
Moreover, the blurring in the characteristicy = x line shown in Fig. 3(b) implies that the double-scroll synchronized
state is contaminated by perturbations, that resemble the characteristic Lissajoux-type figure of a chaotic rotating
wave.
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3. Theoretical analysis

As in our previous contributions [1,2,4], we shall analyze the experimental results presented in Section 2 by
performing a linear stability analysis around the (global) synchronized state. In the theoretical study, and as in the
previous work [2,26] we shall consider a dimensionless version of Eq. (1), that allows us to write the following
evolution equations,

ẋi
j = α[yi

j − xi
j − f (xi

j )] + D(xi+1
j − xi

j ),

ẏi
j = xi

j − yi
j + zi

j ,

żi
j = −β yi

j − γ zi
j , (2)

where the non-linear element is given byf (xi) = {bxi + (1/2)(a − b)[|xi + 1| − |xi − 1|]}, and again, and as
explained in Eq. (1),j = 0, . . . , (N − 1) runs over the number of elements in the ring, andi = 0, 1 is the index
of ring, and, again, for parallel couplingxi

j = xi
j−1 for both i = 0, 1, while in the case of antiparallel coupling

x0
j = x0

j−1 andx1
j = x1

j+1, where the operations over thej indices are moduloN and over thei indices modulo 2.
The coupling constantD is proportional to the inverse of the coupling resistance.

The stability analysis of the problem around the chaotic globally synchronized state starts by performing an
expansion of Eq. (2) around the chaotic state [28,29](xs(t), ys(t), zs(t)), and keeping only linear terms, one obtains
a set of 2N -coupled differential equation system for all the(δx, δy, δz), with a quite sparse structure, as it has 2N

blocks of dimension 3× 3 that correspond to the local dynamics of each cell, plus a (small) number of off-block-
diagonal terms. The way of tackling this problem is different depending on the type of coupling between the rings:
parallel or antiparallel.

3.1. Parallel coupling

In the first case the resulting matrix has a circulant structure, and can be put in block-diagonal form by applying
a discrete Fourier transform (DFT) [7,28], as we did already for a single ring of Chua’s cells [2,26]. The simplest
way is probably to order the cells in such a way that one puts alternatively cells corresponding to Ring 1 and 2 that
are resistively coupled together. We shall write the linearized problem in a more compact way by representing the
variables of the problem in the form:δxxxi

j = (δxi
j , δy

i
j , δz

i
j ), where these variables represent differences between

neighbor circuits,
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δẋxx1
0
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δẋxx1
1

. . .
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where the structure of the terms is as follows:

HHH 0 =

−α − D α 0

1 −1 1
0 −β −γ


 ; HHH 1 =


D 0 0

0 0 0
0 0 0


 ; HHH 2 =


−αf ′(x) 0 0

0 0 0
0 0 0


 . (4)
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The structure of the matrix in Eq. (3) is clearly circulant, where one hasN number of 6×6 blocks whose structure
repeats in the matrix. The problem can be brought to 6× 6 block-diagonal form by applying a DFT [7,28] (over the
indexk) to yield the interaction ofN 6×6 Fourier modes,k = 0, . . . , (N −1). At the same time, theN 6×6 modes
can be written in a simple form by applying a second DFT, in the Fourier indexm = 0, 1, within each block. While
the Fourier transform that yields indexk corresponds to a given ring, the other one is associated to the symmetry
corresponding to every resistively coupled pair of circuits. The final result is that the linearized evolution Eq. (3)
can be cast in a set of 3× 3 equations, in which the Fourier modes are decoupled,

ḣ(k,m) = CCC(k,m) h(k,m) (5)

where the structure of each block can be written in the form

CCC(k,m) =

−α[1 + f ′(x)ek] + D(em − 1) α 0

1 −1 1
0 −β −γ


 , (6)

with ek = exp(i2πk/N) andem = exp(iπm), beingk = 0, . . . , (N −1) andm = 0, 1 the indices of Fourier modes
of the system, withN the number of oscillators of each ring.h(k,m) is obtained after applying two DFTs (with the
respect to indicesk = 0, . . . , (N − 1) andm = 0, 1) to δxxxi

j . The (k, m) = (0, 0) Fourier mode represents the
uniform global chaotic synchronized state of the coupled system and the stability of this state can be characterized by
analyzing the transverse Lyapunov spectrum. Global (double-scroll) synchronization occurs only if all the transverse
Lyapunov exponents (TLEs) are negative. It is important to notice that the(k, 0) Fourier modes take the same value
than thek modes of a single ring [2,4], while the modes(k, 1) are associated with the coupling between rings.
Fig. 4(a) shows the TLEs associated with Fourier modes(k, 0) and(k, 1). Note that forN = 6, the(1, 0) mode is
unstable, which corresponds to a chaotic rotating wave, since now the circuits are not synchronized inside each ring.
As in [2], we warn that the predictions of this linear stability analysis give useful information only regarding the

Fig. 4. (a) Representation of the highest transverse Lyapunov exponent,λ as a function ofq = k/N for two diffusively coupled rings with
the same sense of driving.N is the total number of Chua’s circuits in a ring andk = 0, . . . , N − 1 the Fourier modes associated with the
size of the ring. The upper curve represents the highest TLE for the modes(k, m) = (k, 0), which corresponds with the case of a single ring
without coupling. The middle curve represents the highest TLE for the modes(k, m) = (k, 1) when the coupling coefficient isD = 2.3.
The lower curve represents the highest TLE for the modes(k, m) = (k, 1) when the coupling coefficient isD = 4. (b) representation of
the highest TLE for the mode(k, m) = (0, 1) versus the coupling coefficientD. The value of the parameters for each circuit in Eq. (2) are:
(α, β, γ, a, b) = (10, 12.1, 0.22, −1.26, −0.79).
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onset of instability, not so much the final outcome of such instability, that depends also on higher non-linear terms
in the expansion that are neglected in this level of approximation. The TLEs associated with modes(k, 1) logically
depend on the coupling coefficientD (see Eq. (6)). Thus, for strong enough coupling the linear theory shows that
it is possible to obtain all the TLEs negative, which corresponds to the synchronization between chaotic rotating
waves of different rings. Fig. 4(b) shows the dependence of the mode(0, 1) with the coupling coefficient, showing
the mentioned transition.

3.2. Antiparallel coupling

We shall now analyze the situation corresponding to antiparallel coupling. In this case it is more convenient to
perform a different ordering of the cells, namely by grouping together those corresponding to the same ring, and
the result that one gets is the following,
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δẋxx1
0
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The main difference of the problem of antiparallel coupling Eq. (7) with the previous case of parallel coupling
Eq. (3) is that in the present case, it is not possible to bring the problem to block-diagonal form, at least in an obvious
way, to yield a 3×3 decoupled problem (that runs overk = 0, . . . , (N −1) andm = 0, 1). However, in the present
situation it is possible to apply a Fourier transform over the ring coordinates, but the simplification that one can
attain is, at most, to a 6× 6 problem in which the two cells of different rings that are resistively coupled together
appear. The structure of the 6× 6 problem is of the form

ḣ(k) = DDD(k) h(k) (8)

whereDDD(k) has the form,

DDD(k) =
(

EEE(k) HHH 1

HHH 1 EEE(k)†

)
, (9)

where

EEE(k) =

−α[1 + f ′(x) ek] − D α 0

1 −1 1
0 −β −γ


 , (10)

whereEEE(k)† is the complex conjugate ofEEE(k), and where the other symbols have the same meaning as in the
previous study. The characterization of the instability has been performed in this case as a function of the coupling
coefficientD (that is the inverse of the corresponding coupling resistanceRc). Notice that in this case (see, e.g. Fig.
5) the situation differs compared to the case of parallel coupling. Here, forN = 6, one gets a completely negative
TLS for some values ofD, corresponding to strong coupling, while in the case of parallel coupling, size instability
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Fig. 5. Dependence of the highest Lyapunov Exponentλ(D) corresponding to the modesk = 0, . . . , 3 (for N = 6) on the coupling (diffusion)
coefficientD between rings with opposite sense of driving. The inset shows the transition from positive to negative of the TLE corresponding
to modek = 1 for D = 0.17. Set of parameters as in Fig. 4.

effects within each ring dominated, leading to a chaotic rotating wave behavior, while resistive coupling lead just to
synchronization between the two rings. This is due to the fact that due to the different sense of driving in each ring,
the result of the DFT over thej indices of each ring, that yields thek wavenumbers, leads to nonidentical (complex
conjugate) matrices. Thus, at variance to the parallel case discussed in the previous section, after the appropriate
transformation to block-diagonal form none of the two 3× 3 matrices is identical to that of a single ring (while this
occurred for them = 0 mode in the case of parallel coupling). The result is that both 3× 3 matrices are shifted,
when compared to those of a single ring, and for a range of values ofD, this resistive transverse coupling is able to
stabilize the TLS, yielding a globally synchronized chaotic state (as seen from Fig. 5). (Notice, however, that for
thek = 0 mode one has an isolated Chua’s circuit, as happens for a single ring.)

4. Conclusions

In the present work we have carried out a study of the behavior of coupled rings of cells with chaotic behavior.
There is a lot of interest in this type of systems in neurobiology, as well as in practical applications like robotics.
In particular, in the so-called CPGs, that are basically rings of neurons capable of autonomous rhythmic activity
in response to a suitable stimulus. However, the direct physiological evidence of these structures is quite scarce,
and, thus, one may expect that these CPGs are coupled and intertwined in complicated arrangements, that may
affect to their dynamical behavior. In particular, in the present study we analyze the simplest situation involving the
interaction of these CPG-like structures, namely, the case in which two of such rings interact. We consider the case
in which the local dynamics of the cells is chaotic. As shown in our previous studies [2,4], this fact assures that the
uniform synchronized state of the rings cannot be stable for arbitrary number of cells and/or coupling coefficients.
An instability in this state must appear for some values of the parameters.

These instabilities lead to spatio-temporal (discrete) structures that travel over the assembly of cells. Transverse
coupling between the rings guarantees interaction between the structures that appear within each ring. As the
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coupling within each ring is unidirectional in our study, there are two possibilities in the way of coupling the two
rings, depending on the sense of driving within each ring: parallel and antiparallel. The results of our study is that
the observed behavior in these two cases is different, namely in the region of strong coupling.

Thus, in the case of parallel coupling one has two definite behaviors: if coupling is weak one has two desynchro-
nized chaotic rotating waves, while if coupling is strong these two waves are synchronized between different rings.
Instead, in the case of antiparallel coupling the situation is richer: for weak coupling one has (logically) the same
behavior, namely, two desynchronized rings. On the other hand, curiously enough for strong coupling all the cells
in the two rings become synchronized, being the behavior that corresponding to an isolated cell: a double-scroll.
Thus, interestingly enough, transverse coupling is able to overcome the instability induced in a single ring by driving
coupling [2,4].

We have explained these two different behaviors by performing a linear stability analysis around the uniform
synchronized state for the two rings. In the case of parallel coupling it is possible to classify all the modes by using
a second wavenumberm = 0, 1, in addition to thek = 0, . . . , (N − 1) wavenumber. This simple fact implies that
the instability corresponding to a single ring will be present as the the spectrum corresponding to them = 0 mode
is identical to that of a single ring, and if it has an instability for some wavenumber, typically fork = 1, this will
dominate the whole system as the whole TLS (that corresponds to the modes(k, m) 6= (0, 0)) must be negative
to obtain synchronization [28]. Instead, in the case of antiparallel coupling the crucial point is one does not get
pure modes with a further wavenumber. However, transverse coupling mixes the different single ring modes that
correspond to the two opposite senses in the two rings, and the transverse spectrum does not correspond to that of
a single ring, being the effect of coupling stabilizing for strong coupling.

An interesting effect occurs for intermediate coupling, when the system exhibits a transition from uniform double-
scroll behavior in the whole setting to two independent rotating waves. At some parameter region the system performs
transitions between these two types of behavior, sometimes in a timescale that is larger than the typical timescale
of the system by up to five orders of magnitude.

Acknowledgements

We thank C. Rico for his help on the experimental part of this work. This work was partially supported by
Dirección General de Enseñanza Superior(DGES, Spain) under Research Grants No. PB95–0570 and PB97–0540,
and byXunta de GaliciaandJunta de Castilla y Leónunder Research Grants No. XUGA-20602B97 and SA31/97,
respectively.

References

[1] M.A. Matı́as, V. Pérez-Muñuzuri, M.N. Lorenzo, I.P. Mariño, V. Pérez-Villar, Phys. Rev. Lett. 78 (1997) 219.
[2] M.A. Matı́as, J. Güémez, V. Pérez-Muñuzuri, I.P. Mariño, M.N. Lorenzo, V. Pérez-Villar, Europhys. Lett. 37 (1997) 379.
[3] I.P. Mariño, M.A. Mat́ıas, V. Pérez-Muñuzuri, , Int. J. Bif. and Chaos 8 (1998) 1733.
[4] E.Sánchez, M.A. Matı́as, V. Pérez-Muñuzuri, IEEE Trans. Circuits Syst. I, 1999, in press.
[5] J. Güémez, M.A. Matías, Phys. Rev. E 52 (1995) R2145.
[6] L.O. Chua (Ed.), Spatio-temporal patterns in electronic systems, IEEE Trans. Circuits Syst. I 42 (10) (1995).
[7] A.M. Turing, Phil. Trans. Roy. Soc. Lond. B 237 (1952) 37.
[8] J.D. Murray, Mathematical Biology, Chaps. 14, Springer, Berlin, 1989.
[9] D.A. Linkens, I. Taylor, H.L. Duthie, IEEE Trans. Biomed. Eng. 23 (1976) 101.

[10] R.M. Harris, E. Marder, A.I. Selverston (Eds.), Dynamic Biological Networks, MIT Press, Cambridge, 1992.
[11] S. Grillner, P. Wallén, Annu. Rev. Neurosci. 8 (1985) 233.
[12] S. Grillner, Science 228 (1985) 143.



I.P. Mariño et al. / Physica D 128 (1999) 224–235 235

[13] K.G. Pearson, Ann. Rev. Neurosci. 16 (1993) 265.
[14] S. Grillner, Sci. Am. 274(1) (1996) 48.
[15] J.J. Collins, I.N. Stewart, J. Nonlinear Sci. 3 (1993) 349.
[16] J.J. Collins, I.N. Stewart, Biol. Cybern. 35 (1994) 95.
[17] S.H. Strogatz, I.N. Stewart, Sci. Am. 269(6) (1993) 102.
[18] M. Golubitsky, I.N. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, vol. II, Springer, New York, 1988.
[19] N. Kopell, G.B. Ermentrout, SIAM J. Appl. Math. 50 (1990) 1014.
[20] M. Golubitsky, I. Stewart, P.L. Buono, J.J. Collins, Physica D 115 (1998) 56.
[21] B.L. Bardakjian, S.K. Sarna, IEEE Trans. Biomed. Eng. 27 (1980) 193.
[22] H. Hayashi, S. Ishizuki, J. Theor. Biol. 156 (1992) 269.
[23] G.J. Mpitsos, R.M. Burton, H.C. Creech, S.O. Soinila, Brain Res. Bull. 21 (1988) 529.
[24] H.D.I. Abarbanel, M.I. Rabinovich, A. Selverston, M.V. Bazhenov, R. Huerta, M.M. Sushchik, L.L. Rubchinskii, Physics-Uspekhi 39

(1996) 337.
[25] R.N. Madan (Ed.), Chua’s Circuit: A Paradigm for Chaos, World Science, Singapore, 1993.
[26] E. Sánchez, M.A. Matı́as, V. Pérez-Muñuzuri, Phys. Rev. E 56 (1997) 4068.
[27] R.M. Kielkowski, Inside Spice, McGraw-Hill, New York, 1994.
[28] J.F. Heagy, T.L. Carroll, L.M. Pecora, Phys. Rev. E 50 (1994) 1874.
[29] L.M. Pecora, T.L. Carroll, G.A. Johnson, D.J. Mar, J.F. Heagy, Chaos 7 (1997) 520.
[30] J.F. Heagy, N. Platt, S.M. Hammel, Phys. Rev. E 49 (1994) 1140.


