PHYSICAL REVIEW E, VOLUME 64, 056218

Transition from oscillatory to excitable regime in a system forced at three times
its natural frequency
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The effect of a temporal modulation at three times the critical frequency on a Hopf bifurcation is studied in
the framework of amplitude equations. We consider a complex Ginzburg-Landau equation with an extra
guadratic term, resulting from the strong coupling between the external field and the unstable modes. We show
that, by increasing the intensity of the forcing, one passes from an oscillatory regime to an excitable one with
three equivalent frequency-locked states. In the oscillatory regime, topological defects are one-armed phase
spirals, while in the excitable regime they correspond to three-armed excitable amplitude spirals. Analytical
results show that the transition between these two regimes occurs at a critical value of the forcing intensity. The
transition between phase and amplitude spirals is confirmed by numerical analysis and it might be observed in
periodically forced reaction-diffusion systems.

DOI: 10.1103/PhysReVvE.64.056218 PACS nuni)er05.45—-a, 82.40.Bj, 05.70.Ln

[. INTRODUCTION instability of liquid crystals, a spatial modulation of the bi-
furcation parameter may induce discommensurations, incom-
In many cases, the nucleation of spatio-temporal patterngensurate wavelengths, and domain walls. The similarities
is associated with continuous symmetry breaking, and thesaith analogous equilibrium phenomena rely on the fact that,
patterns are thus very sensitive even to small perturbations &fose to this instability, the asymptotic dynamics is described
external fields. Perturbations may be induced by imperfecby the minimization of a potentidb,7]. .
tions of the system itself.g., impuritieg, of the geometrical In the case of self-oscillatory systems, however, original
setup(e.g., the boundary conditionsof the control param- effects occur as a consequence of the nonrelaxational char-

eters, etc. In addition, external fields may induce spatial ofCter of the dynamics. In particular, for wave bifurcations,
temporal modulations of the control or bifurcation param-unstable standing waves, or two-dimensional wave patterns

eters. In fact, spatially or temporally modulated systems argu?égli jzsgéid tk;]ys %‘ﬁrﬁesr)uaet'ri[;_tfgpﬁzzlngg‘g?“ﬂ?g of

very common in nature, and the effect of external fields o 9t _requenc ) P

these svstems has beeﬁ studied for a lona time. As a wa r‘lu]amporal modulations in oscillating extended systems has
y ) . g ime. Y Peen considered theoreticall¥3,14] and in experiments on

example, the forcing of a large variety of nonlinear oscilla-

) " “"chemical systems forced by periodic illuminatifh5—-18.
tors, from the pendulum to Van der Pol or Duffing oscilla- 1o sy,dy by Coullet and Emilsson of forced Hopf bifurca-

tors_, has led to detailed _studles of the different temporal begns is based on amplitude equations of the scalar Ginzburg-
hawo_rs that can be obtame@. It has been s_hown that resonantngau type. They considered periodic temporal modula-
couplings between the forcing and the osc_lllatory mers MaYions of frequencywe=(n/m)(wo— »), where fi/m) is an
lead to several types of complex dynamical behaviors, injrreducible integer fractiony, is the critical frequency of the
cluding quasiperiodicity, frequency lockings, devil's stair- Hopf bifurcation, and is a small frequency shift. Such forc-
cases, chaos, and intermitter{dy2]. ings break the continuous time translation down to discrete

In equilibrium systems, the importance of spatial modula-time translations, and the corresponding amplitude equations
tions has been known for a long time. For example, in thehecome
case of spatial modulations occurring in equilibrium crystals, .
such as spin or charge-density waves, the constraint imposed,A=(u+iv)A+(1+ia)V2A—(1+iB)A|A|?+ y,A" 1
by the periodic structure of the host lattice leads to the now (1)
commonly known commensurate-incommensurate phase
transitions. The transition from the commensurate phasdA stands for the complex conjugate Ajf. In the nonforced
where the wavelength of the modulated structure is a mulease ¢,=0) and for zero-frequency shiftv& 0), this dy-
tiple of the lattice constant, to the incommensurate one ochamical system is of the relaxational type i@~ 3=0. In
curs via the nucleation of domain walls separating domaingnore general situations, the system follows a nonrelaxational
that are commensurate with the host lat{ided]. dynamics[12]. If the forcing intensity y, is sufficiently

In nonequilibrium systems, the systematic study of thestrong, this dynamics admits asymptotically stable uniform
influence of external fields on pattern-forming instabilities issteady states, corresponding to frequency-locked solutions.
more recent. It has been first devoted to instabilities leading here aren different frequency-locked solutions, which only
to spatial patterns. For example, the Lowe-Gollub experidiffer by a phase shift of 2/n. These solutions are always
ment[5] showed that, in the case of the electrohydrodynamictable in the large forcing limit fon=1,2,3,4, the so-called
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strongly resonant cases. In this regime, the dynamics re R
sembles some sort of excitability. The locked solutions may

undergo various types of instabiliti€$3]. One of them is of R excitabilits
=0 g
N |
\

phase type and occurs wher-kvB is sufficiently negative.

In this case, competition between phase instability and forc-
ing leads to the formation of stripes or hexagonal patterns; |
with their associated topological defects. If the forcing is
decreased, these structures break down through spatic
temporal intermittency13]. On the other hand, in the phase
stable regime, frequency-locked solutions may undergo a va
riety of bifurcations when forcing is decreased, leading to
oscillation, quasiperiodicity, or cha¢49].

The equivalence between the different frequency-locked
states makes possible the formation of stable inhomogeneot
structures. These structures are composed of domains of th.
locked states separated by abrupt interfaces. Nonrelaxational
dynamics may induce interface motion and, in particular, thq‘_a
formation of n-armed spirals, each arm corresponding to a

. . al
different frequency-locked solution.

These phenomena were studied in great detail by Coull
and Emilsson, forn=1 and n=2, in one- and two- o
dimensional systemgl3]. The casen=4 has been consid- aA=pA+(1+ia)V2A—(1+iB)AIAIZ+ yAZ%,  (2)
ered theoretically in[14]. Experimentally, resonant phase
patterns associated with frequency locking have been dewherey=0 (the casey<O follows by changindA— —A) is
scribed for a periodic forcing of the Belousov-Zhabotinsky proportional to the external field intensity. The other param-
chemical reaction fon=2 [17] andn=4 [18]. Forn=3, the  eters are standafd3,24. We will restrict ourselves to this
existence of three-armed rotating spirals in two-dimensionatase of resonant forcing’& 0). A slightly off-resonant forc-
systems is only briefly mentioned [i3]. Experimental ob- ing is known to induce a richer dynamical behav[d9]
servations of frequency locking for=3 are also briefly dis- whose characterization for a spatially extended system is be-
cussed inM15,16. In these experiments, patterns with three-yond the scope of this paper.
phase domains shifted by#23 are observedi20]. It is the We look now for uniform solutions. By dropping the spa-
aim of this paper to study the case of resonant forcing fotial derivative terms, the corresponding uniform equations
n=3 in more detail, and especially the transition from phaseare, in phase and amplitude variabfés=R(t)e' o],
spirals to amplitude spirals. The interest of this study is
threefold. First, it confirms the robustness of the Ginzburg- Ro=uRo—R3+ yR3 cos 3D,

Landau dynamics, which is recovered at low forcing, with all
its complexity and its particular sensitivity to kinetic coeffi-
cients. Second, it presents original dynamical behavior in the
excitable regime. This behavior presents interesting analo- . o .

gies with Rayleigh-Beard convection in a rotating cell, de- C1f_we look at the stationary solutiorxed points, Egs.(3)
scribed by three-mode dynamical modg24—23. Third, it give
could be a useful framework for the interpretation of detailed
experiments on the 3:1 resonant forcing of a chemical system
[201]"he paper is organized as follows. The dynamical modefrom which the amplitudes of the uniform solutions are given
and its uniform asymptotic solutions are presented in Sec. 1%
Section lll is devoted to the description of the dynamics in
terms of phase equations. The properties and possible devel-
opment of front and spiral solutions are discussed in Sec. IV.
Numerical results, for one- and two-dimensional systems, are
presented in Sec. V and conclusions are drawn in Sec. VI.Such solutions exist provided that>y., with

FIG. 1. Nullclines and fixed points of the forced Ginzburg-
ndau equation fory=8=1, u=0.25 in theR,¢ plane. Black

rrows indicate the dynamical flow along the nullcliRe0, while
ray arrows indicate the dynamical flow along the nullclibe:0.

(1+ B)RS— (2 + y?)R3+ u2=0, (4)

1
RE=5(1+BA)[2u+ Y= \y +auy’—4u’p?). (9

2__ 2
Il. UNIFORM SOLUTIONS Ye=2p(V1+B°—1). (6)

Consider an extended system undergoing a Hopf bifurcaNote that for8= 0 these solutions exist for any nonvanishing
tion at zero wave number, and subjected to a periodic temforcing. We will consider the case @+ 0 for which these
poral modulation of frequencw.=3w,. Sufficiently close solutions appear at a finite value of the forcing. Once the
to the bifurcation, its dynamics may be reduced to the fol-amplitude is determined by E@5), the phase can be ob-
lowing complex Ginzburg-Landau equatif?4]: tained from the stationary version of Eq8):
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RR—u - BR, to R_ and @3,P5,P5)=(0F, D]+ 2m/3P+4m7/3) cor-
YR, * S 30y= v (7)  responding tdR, . A linear stability analysis shows that the

®/' are always linearly unstable whereas dgare stable for
Each value ofRp=R, ,R_ gives rise to three solutions for |,8|<\/§. The threed; solutions are called the frequency-
the phased, which only differ by a phase shift of 2/3.  locked solutions. These become oscillatory unstalie (
Hence, fory>1y, the system has six uniform solutions: =0, w#0) for |,8|>\/§ in the range of forcing amplitudes
(O}, 05, DY) = (D], 0] +27/3P+4m/3) corresponding  y.=< y,<y<y,, Where

cos 3b,=

)73
"= \/7§+ g 1) AL 3B T T3 p74 3365,

v2=Vu(1l+ B%)/2. ®

In the case in which the frequency-locked solutions ardions can be better analyzed in the framework of phase equa-
stable, we can show that the system behaves as an excitatiens that we will develop in the next section.
one: let us construct the nuliclines of the dynamical system The transition between locked and oscillatory states is
(3), defined as the curveR,=0 and®,=0, and represent Similar to the Andronov—van der Pol bifurcati®5], which
them in Fig. 1 fory=pg8=1, »=0.25, or in Fig. 2, fory appears_in several types of excitable_systém'gi In fact, on
=B=0.01, .=0.25. In both figures, it is easy to see that thedecreasing the amplitude of the forcing, stable and unstable
R_ states(labeledu) are unstable, while thR, states(la- locked states merge via inverse saddle-node bifurcations,
belede) are stable for small perturbations. However, for per-Which give rise to limit cycle oscillations. Note that we have
turbations larger than a well-defined threshold, the latter ar@€re three pairs of fixed points merging, instead of just one
unstable and the system makes an excursion in the phaB@ir in classical cases. Whepapproachesy, from below,
space, before reaching another, equivalent, steady state. Ittfde period of the oscillations diverges ag.{- y)"? showing
a form of excitability. Fory<1y., there are no fixed points SOmMe kind of critical sloyvmg down. On the other hand, when
of Egs.(3) and asymptotic solutions correspond to temporalY= Yc. Small perturbations around the stable states decay,
oscillations of the limit cycle type. Fop=0, the limit cycle ~ While sufficiently large perturbations put the system on a
is a circle that becomes deformed fox@ < vy, (see Fig. 3.
On increasingy, the period of the oscillations increases and — y=00
diverges fory— y.. The stability of these oscillatory solu- Im(A)

1.0

£
~<
~

05-
ﬁ'l\stable

" stgble

N 05

excitability

FIG. 2. Nullcline R=0 in the complexA plane. Along this

nullcline the fixed pointsi ande are determined byp=0. Param-

eter values are= 3=0.01, «=0.25. Note that for these parameter FIG. 3. Uniform solutions of Eq(3) for several values of the
valuesR, ~R_. Arrows indicate the dynamical flow, with long forcing parametery. System parameters ape=1, 8= —2.0 (so
arrows indicating the excitable excursions associated with a heteroy.=1.57). Note that fory<vy., uniform solutions are of the limit
clinic trajectory. cycle type, whereas foy> vy, they become fixed points.
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heteroclinic trajectory that goes from a stable fixed point to drequency-locked solutions. The relaxational motion in the
different, but equivalent fixed stable point through the excit-potential is such that for each trajectory, and depending on
ability threshold. The intensity of the perturbations leading tothe initial condition, the test particle selects asymptotically
a heteroclinic trajectory decreases wherapproachesy.,  one of the local minima and the angular symmetry is now
and this phenomenon reflects a type of excitable regime. proken. The probability density function for that particular

All these features can be analytically shown in the limit- trajectory becomes & function centered around the selected
ing casep, y<<pu. In this limit, and taking into account that yajye of the angle. For an ensemble of different initial con-
.= B\u, the adiabatic elimination of the amplitude in Eq. gitions, the probability density function is a sum of thi&s,

(3) leads to the phase equation P(Dg)=13;_,8(Dy— D).
As usual, the transition between the symmetric and the

Po=- \/;( Yot ySin3Po), ©) symmetry-broken phases can be characterized by an order

from which the excitable stable steady states are given bparameter. For an angular variable, the order parameter
sin3Dbf=—1y,/y and cos®>0, and the three unstable Should be some periodic function, such as the mean value of

steady states satisfy sidb8=-1./y and cos®/<0,i the sine(sin(®y)) (other periodic functions give similar re-
=1,2,3. In this case, the threshold of the perturbation leadin§ults- For y<yc it is (sin(@®))=0, whereas fory>y that
to excitability is thus given by average sets into one of three possible values corresponding
to the selected phase. Since its value in any phase is different
AD = |DE— DY~ T E Ye (10) from zero aty= v, the order parameter changes discontinu-
: "3 3y ously at the transition point and, following the standard no-

tation, the transition can be classified as a first-order one. In
Equation(9) describes a relaxational motion of a fictitious this mean-field description, and according to the discussion
test particle in a potential, above, the transition implies a critical slowing down with a
characteristic time diverging with an exponénboth below
N (D) I 7 )
— (12) and above the transition point. Equivalently, one can charac-
dPo terize the transition pointy=7y. by the fact that the fre-
guency of the motion tends to zero continuously at that point
and stays equal to zero for=17.. In an extended system,
y one could observe coexistence of the three phases at different
V(@) =Pg— 37,008 3Dy (12)  |ocations in space, as described later in Fig. 6. Furthermore,
¢ in any finite system, there is no true phase transition and the
This potential picture gives a framework to describe the bisharp behavior predicted by this simple mean-field analysis
furcation aty= v, in the language of phase transitions. In the gets smeared out and tidetype probability density functions
case y<y., the potential is unbounded and has no localfor y> vy, have a finite width. Evidence of this fact is given
minima. As a consequence, the motion is such that the phasater from our numerical simulationsee the lower row of
®y(t) decreases monotonically and the test particle does ndtig. 7).
stop in any selected value of the angle. When considering
modulus 27, the trajectory is a periodic oneby(t+T)
=do(t)+27, with a period T=(27/Ju)(ye—y?) IIl. PHASE APPROXIMATION
which diverges asT~(—¢€) Y2 when y—1y. with e _ _ _
= yly.—1. As in mechanical problems, it is possible to de- In th!s _sectmn, we presgnt several phase equauon;, each
fine a probability density functior?(d.), for the angle vari-  °N€ valid in a d|ffere_nt region of parameters. As mentioned
able as proportional to the time the particle spends in thd the preceding section, phase equations can be used to ana-
neighborhood of any value of the andia other words, the YZ€ the stability of the uniform patterns.

probability is inversely proportional t®,). This probability
density functionP(®,) develops three peaks which sharpen
as vy increases, indicating three preferred values for the
angle. This shows that the characteristic time around each In the oscillatory regime¢<yc), the phase dynamics can
minimum increases foyy— vy, and actually it diverges as be obtained Dby perturbing the uniform  solution
(— €) Y2 However, for all values of/< ., the dynamicsis (Ro(t),®o(t)) and writing R=Rq(t)+p(r,t), ®=d[t
such that none of the preferred values for the angle is actus ¢(rt)]. Following Hagan27], the adiabatic elimination

ally selected since the system moves continuously from ongf the amplitude perturbations in the regifiey< u leads to
to another. In that sense, we can say that there is a dynamicgje following phase dynamics:

restoring of the angular symmetry.
The situation is quite different fop>y. . In this case, the = (1+aB)V2p+ (V) 2+ -, (13
potential V(®P,) develops local minima which, at lower or-
der in e, are ®S=m/2+(|2/3)e'? DS=DS+27/3, DS
=®J+4m/3. These minima correspond to the threewhereT is the period of the oscillations, and

d)oz - yc\/;

where the potential is

A. The oscillatory regime
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T 2BRg+ysin3dg. , locked solutions are stable fortla>0. If 1+aB<0, a
o Jo 2R,— ycosd, = ° ]E)attern-zormmg instability of the locked states would occur
B= - ’ or [13],
didj
fo 0 g ,at(1+p2)° a7
oY v ap)t
T [2BRy+ysin3d, -
fo dt 2R,— ycosb, a|Dg _Since,_ ?n t_his regimey>y., a necessary condition for this
K= = . (14) instability is thus
2
Jo dids (1+aB)*>72(J1+ B2~ 1)a*(1+ %%, (19

and this condition cannot be realized in the+ «B<0}
domain. Therefore, the frequency-locked solutions are stable
so that pattern-forming instabilities are ruled out within the

For y—0, one recovers the usual Burgers equation

dp=(1+aB)V2p+(a—B) (V) 2+ - (15  phase approximation. It is also possible to prove that the
locked solutions are always stable in the limit of large forc-
with = Bud. ings[13].

Hence, in the regime where+las>0, stable(phase
spiral waves may be expected, with wave number propor-
tional to x, and thus depending on the characteristics of the For >, the forced Ginzburg-Landau equation pos-
oscillations[27,28. In this regime, the qualitative behavior sesses three equivalent excitable steady states. The excitabil-
and interaction between these topological defects should thyg; mechanism described in the preceding section provides a
be almost insensitive to the forcing@9-31. Furthermore, in - natyral way of building fronts between these steady states.
the regime where *aB<0, defect-mediated turbulence Despite the equivalence of the fixed points, such fronts are
should also be expectd®2]. In the oscillatory regime, the expected to move, as a result of the nonpotential character of
system presents thus qualitatively the same complexity anthe dynamics.
the same spatio-temporal behaviors as self-oscillating sys-
tems. Only quantitative aspects are affected by the forcing. A. One-dimensional systems

IV. FRONTS AND SPIRALS

Consider a front solution of Eq16), e.g., ®x(x—vt),
B. The excitable regime joining the states latx— — ) and 2(atx— + ), such that
In the excitable regime/>y,, and the phase dynamics ®3>®7. Its velocity may be computed along the standard
can be obtained in the limjB, y<u, B<1 by eliminating procedures, and is such that leading order in perturbatipn
adiabatically the amplitude of the field. Taking into account

that, in this regimeR?= u and y.=|p| Juw, we are left with 27770\/;+ 3(a—,3)f+w(ax<1>12)3
the following phase equation: —
v= — . (19
@ =—Ju(ye+ ysin3)+(1+ap) V2D —(a—p) 3J (0xP19)?
o, @A(1+B7)
X(Vd)“+ TV . (168 Hence, fora> B, the frontsd,,, ®,3, and®s, move to the

right, while the frontsb,;, &3, and®;, move to the left.

. . . ) ence, any domain of one steady state, embedded in a do-
Besides the homogeneous solutions discussed in the precegdyin of another one, either expands or shrinks, leaving the
ing section, this equation admits front solutions connectlngSystem in one steady stafiomains of 2 embedded into 1, 3
stable states asymptotically at=*. In the casea=B 1o 2, and 1 into 3 shrink while domains of 1 into 2, 2 into

=0, the phase equation is relaxational and the fronts connegt gnq 3 into 1 expandHowever, a successidgfrom left to
two states with the same value of the potential and are, therqal-’ght) of domains with states ir’1 the order 1. 2. 3. 1. etc.

fore, stationary. In the case=8+0, the phase equation is moyes as a whole to the right. When it is in the order 1, 3, 2,

still relaxational but now the steady states have a dlffereni etc., it moves as a whole to the léfee Fig. 4

value of the potential and the front moves. Moreover, when

a# B there is a purely nonpotential induced front motion.

Equation(16) will be used in the next section as the starting

point to compute the velocity of the front solution. In two-dimensional systems, straight linear fronts have
In order to study pattern-forming instabilities, we can usethe same behavior as in one-dimensional systems. Further-

Eqg. (16) in the limit of small ®. Expanding sin® up to

linear order in®, we are led to a damped Kuramoto-

Sivashinsky phase equati¢n3]. It follows that frequency-  !This corrects the misprint of Reff13] in e andk, after Eq.(29).

B. Two-dimensional systems
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arg(A)

0 50 100 150 200 250
X

FIG. 4. Plot of the phase field in the excitable regime in 1D.
Note the existence of three homogeneous phase states. The arrows
indicate the direction of motion of the several fronts. Parameter
values areu=1, a=2, B=-0.2, y=0.5.

more, sets of two inclined fronts separating domains with
different steady states also move away or annihilate, leaving FG. 5. Examples of motion of pairs of inclined fronts separat-
the system in one steady state ofdge Fig. 3. ing domains with equivalent steady states of the forced Ginzburg-
New phenomena may arise when the three steady stat@sndau equation foy> y. .
coexist in the system. In this case, three fronts, which sepa-
rate the respective domains, coalesce in one gainertey.
The three fronts are expected to rotate around this point. Th
result is a rotating spiral whose angular velocity increase
with the forcing amplitude. Spirals corresponding to se-
guences of states in the orde~2—3 or 1—3—2 around
the center have opposite senses of rotation. Isolated vertic
remain immobile, but nonisolated ones have a dynamic
evolution induced by mutual interactions, which may even .
lead to the annihilation of counter-rotating spirals. This dy_cases studied.

namical behavior is illustrated by the results of the numerical We start our d|_scu_53|on_ considering cases in Wh'Ch the
analysis presented in the next section. phase approximation is valig3(y<<u). We first consider a

The situation is similar to that observed in systems with®@S€ below the Benjamin-F&iBF) line (1+ «3>0) choos-
competing fields. For example, in the context of fluid dynam-N9 Parameter valuega=2, 8= —0.2; y.=0.2. This case
ics, a three-mode model has been proposed to StuOg/orresponds to .thtrozen s;ateseglme in the phase diagram
Rayleigh-Bmard convection in a rotating celp1,22. The ©Of the CGLE with no forcing33]. In Fig. 6, we show the
fields represent the amplitudes of three sets of convectiofodulus and the phase of the complex fialtor values ofy
rolls oriented 60° from each other. In the two-dimensionalOrrésponding to no forcing, oscillatory=y., and excit-
system, vertices may form when the three different types of?le regimes. As expect¢83], spiral defects surrounded by
roll domains meet at one poirihotice that this is not pos- SNOck lines occur when there is no forcing. When the
sible in one-dimensional systerf&3]). Then, the nonpoten- strengt_h of the forcmgy_ is mcreas_ed, but still being bel_ow
tial dynamics induces the rotation of the interfaces aroundhe critical valuey, (oscillatory regimg, the phase dynamics

the vertices preventing the system from coarsening. At longl0€s not change significantly. However, amplitude spirals
time scales, the vertices diffuse throughout the system. ~ @Ppearin the modulus of the field. The splitting of the phase
into three locked states is observed approximately at the pre-

dicted theoretical value of the forcing.. For a value of the
forcing parameter slightly greater thagp, we observe anni-

In this section, we present numerical results in two spatiahilation of vertices until a homogeneous state is reached. For
dimensions which illustrate the various dynamical regimesvalues ofy close toy., the motion of the walls can be very
described in the preceding sections. We have solved numerslow with patterns that might look stationary in short time

(éally the forced CGLE in two spatial dimensions by using a
seudospectral method with periodic boundary conditions.
e discretize the system in a square mesh of >X2Bb6

points. Cases within and beyond the validity of the phase

ggproximation and with + ¢8>0 and 1+ «8<0 are con-
idered. In all cases, the parameteis taken fixedu=1. In

able I, we summarize the parameters chosen for each of the

V. NUMERICAL RESULTS

TABLE |. Parameters of the various cases discussed in Sec. V.

Phase approx.

M a B Ye valid? 1+ apB Regime (y=0) Figure
1.0 2.0 —-0.20 0.20 Yes >0 Frozen states 6,7
1.0 55 —-0.20 0.20 Yes <0 Frozen states 8
1.0 2.0 —0.76 0.72 No <0 Phase turbulence 9
1.0 0.0 —1.80 1.45 No >0 Defect turbulence 10, 11
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~ s N IND the transition from oscillatory to locked behavior and one
R N e _;. ¢S ) \ may observe spirals generated by fronts between different
-§ Y . S 1L~ stable steady states of the system. This transition is in fact
S . V) =7 s 7 the spatial unfolding of the evolution of the phase portrait
e . - = displayed in Fig. 7 for increasing, which in turn corre-
e e | sponds to the mean-field description of the transition given
@ @ after Eq.(12).
S Above the BF line (3 aB<0), we choosex=5.5 and
A ‘ keep the rest of the parameters as before. The most notewor-
A - - 4 thy difference from the previous case is the existence of
¥=9 1<% =% 1>% asymptotic frozen states for all values piwithin the oscil-

FIG. 6. Modulus and phase of the complex fiéldn the cases latory regime, even close to the critical forcing (see Fig.
y=0 (no forcing, y<1y, (oscillatory, y=7v., and y>1y, (excit-  8). Below y., we observe frozen targets while close to the
able. Parameter values arg=1, a=2, 8=—0.2 (so thaty, transition (y~v.) the frozen patterns hold three locked
=0.2), andy=0.1 (0.25) for the oscillatoryexcitable case. phase states but without vertices. The particular geometry of

these patterns is due to the emergence of locked phase states.
scales of observation. For larger values of the forcing paramAs expected, large enough values of the forcing parameter
eter, the nonrelaxational dynamics is able to stop vertex argive rise to a time-dependent dynamics with three-armed spi-
nihilation and therefore the coarsening process. The systefidls rotating around vertices.
remains in a self-sustained dynamical state dominated by Beyond the validity of the phase approximation, different
three-armed rotating spirals. phenomena may occur. In particular, pattern-forming insta-

Motivated by the way in which experimental data for 2:1 bilities may take place for small and moderate values of the
or 4:1 resonant forcing are presented 17,18, we show in  forcing parameter above its critical valug . In the case
Fig. 7 a phase portrait in the complex planeffobtained above the BF line with parametefsv=2, 8= —0.76; vy,
from the snapshots shown in Fig. 6. We also include the=0.72 (phase turbulenceegime in the absence of external
corresponding histograms for the values of the phasa.of forcing), oscillating targets that coexist with vertices are ob-
This representation of data clearly displays the transitiorserved close to the transitiosee Fig. 9. Pulses in the
from the oscillatory to the excitable regime. The phase pormodulus ofA form concentric rings at the center of the tar-
trait gives a demonstration, for the spatially extended systengets with an amplitude which decays in space as they propa-
of the deformation of the limit cycle described in Fig. 3. gate away from the center, while the phase oscillates peri-
Furthermore, it enlightens the transition from one-armed spiodically between— 7 and .
rals, which are generic defects of unforced oscillations, to We also considered, beyond the validity of the phase ap-
three-armed spirals, which are generic defects of the lockegroximation, a case below the BF line. Our choice of param-
states. Effectively, ay=0, one observes typical phase spi- eters{a=0, 8= —1.8; y.=1.45 corresponds to alefect
rals associated with the monotonic phase variations. In thiturbulence regime at y=0. Since X af>0, well-
case, there are no fronts separating different states of théeveloped spirals can be observsde Fig. 10 The modu-
system. Wheny increases, the phase variable spends an inlus of the field is characterized for<y. by amplitude spi-
creasing amount of time around the precursors of the locketgls that rotate around defects, whereas the phase shows a
states, as reflected in the histograms of Fig. 7. This manifestsehavior similar to the one foy=0. These three-armed am-
itself in the appearance of fuzzy three-armed patterns arounglitude spirals become well developed far vy, correspond-
vertices of the modulus of the field (see, for example, Fig. ing to the emergence of the three possible homogeneous
8). For y slightly larger thany,, the system has undergone phase values. On the other hand, sijgf> /3, and accord-

.

FIG. 7. Phase portraitupper

o v 2 =2 row) in the complex plane of the
2 -t 0 1t 2 -2 - 06 1 2 -2 -1 0 1 2 -2 -1 0 1 2 field A and corresponding histo-
grams (lower row) of the phase

0.20 0.30 25 6
| T 05 20l 5 field. Plots have been made from
o 0.20 4 the snapshots of Fig. 6.
1.5f
0.10 0.15 3
1.0f
0.10 2
0.05
0.05 0.5p 1
0.00 0.00 0.0 0
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[ g
Y=Y Y>Ye
FIG. 8. Same as in Fig. 6. Parameter values arel, a FIG. 10. Same as in Fig. 6. Parameter values arel, «
=5.5,8=-0.2 (y.=0.2), andy=0.1 (0.25) for the oscillatory =0, 8=-1.8 (y.=1.45), andy=1 (1.6) for the oscillatoryex-
(excitablg case. citable case.
ing to the discussion of Sec. II, there exists a range of values VI. SUMMARY

of the forcing parameter for which the locked solutions  temporal forcing of nonlinear self-oscillating extended
present an oscillatory instability at zero wave number. Thissysiems strongly couples with the unstable modes associated
is seen in Fig. 11. This instability is observed after the anniyyitn 4 Hopf instability. Such forcings modify the character
hilation of two counter-rotating defects. In the squared re-f the pifurcation and the resulting spatio-temporal patterns,
gion identified in the figure, we observe the development ot opserved in different resonant regimes of a forced
an qscﬂlatmg target corresponding to the homogenequs O$zaction-diffusion systenil5—1§. In this paper, we have
cillation. From Fig. 11d) onwards the oscillating regions gy,died the particular case of a resonant temporal modulation
sh_rlnks and disappears under the invasion of neighboring; ihree times = 3) the critical frequency of the Hopf bi-
spwalg. . ) furcation.

It is important to emphasize that fon>y., the o forcing amplitudesy below a critical valuey, the
asymptotic state is essentially the same regardless of the difysiem is in an oscillatory regime, where the spatio-temporal
ferent dynamical regimes that exist for=0 and different  pepayior strongly depends on the parameters of the associ-
parameter values. The phase is locked to either of the thregeqy Ginzburg-Landau equation. Uniform solutions corre-
values predicted theoretically, with interfaces between thesgpond to temporal oscillations of the limit cycle type and
thr(_ae Ipcked states rotating _around vertlcgs. This rOtaF'orlopoIogical defects correspond to one-armed phase spirals.
yvhl_ch is due to the_underlylng nonr_elaxatlonal dynamics\yhen y approachesy, from below, the period of the limit
inhibits the coarsening process which would take placecyde diverges asy.— )2 showing some type of critical
through vertex annihilation. The vertices are essenuallysbwing down. For forcing amplitudes above the critical one,

pinned and the resulting pattern is, on the average, time pgne system is in a phase-locked regime with three equivalent
riodic at relatively short time scales. When the phase ap-

proximation is valid, the locked phase states are seen to be
stable, but excitable spirals may be absent near the transition
for system parameters such that &3<<0. Beyond the va-
lidity of the description based on the phase approximation,
instabilities of the homogeneous phase states may take place
giving rise to complex patterns.

Y>Ye
FIG. 11. Snapshots of the modulus of the field in a regime of

FIG. 9. Same as in Fig. 6. Parameter values arel, « parameters where an oscillatory instability at zero wave number
=2,B8=-0.76 (y.=0.72), andy=0.5 (1.5) for the oscillatory occurs. The square encloses an oscillating region. Time increases
(excitablg case. when going from(a) to (d).
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steady states. The bifurcation occurringyat y. can be de- Landau equation for different parameter values which corre-
scribed, in a mean-field approximation, as a first-order phasspond to qualitatively different regimes of the phase diagram
transition between a motion in which the temporal average obf this equation when there is no forcing.

the phase is zeroy<1y.) to one with a nonzero average  There are a number of analogies of our results for
phase ¢>y.). We have given a phase approximation de-> v_and the spatio-temporal patterns observed in a model of
scription of both regimes for a spatially extended system. rotating Rayleigh-Beard convectiori23]. In the latter case,

As in then=1 andn=2 cases of strongly resonant forc- the domains correspond to sets of parallel convection rolls
ings, a form of excitability may also be observed. However,yith a certain orientation and the vertices to points at which
contrary to then=1 andn=2 cases, no pattern forming fronts separating domains of three preferred orientations
instability of the frequency-locked states occurs, in this casemneet. As in the case studied here, the rotation of interfaces

for parameter values for which the phase approximation iground vertices, due to nonrelaxational dynamics, produces
valid. Due to the nonrelaxational character of the dynamicsyotating three-armed spirals.

fronts between equivalent steady states move. The result is
that, when the three equivalent steady states coexist in the
system, three armed rotating spirals are generated around
vertices where the fronts separating each domain meet.
Hence, we predict a transition from one-armed phase spirals We thank A. Lin and H. Swinney for sharing with us
to three-armed excitable amplitude spirals, which occursnformation on their unpublished results on 3:1 resonant pat-
when the forcing amplitude passes through a critical valugerns. We acknowledge financial support from DGESIC
v.- We have confirmed and described this transition by nu{Spain Projects No. BFM2000-1108 and No. PB-97-0141-
merical analysis of the corresponding complex Ginzburg-C02-01.

ACKNOWLEDGMENTS

tems Vol. 115 in the IMA Volumes in Mathematics and its
Applications, edited by M. Golubitsky, D. Luss, and S. H.
Strogatz(Springer-Verlag, New York, 1999pp. 193-202.

[17] A. L. Lin, M. Bertram, K. Martinez, H. L. Swinney, A. Arde-
lea, and G. F. Carey, Phys. Rev. L&, 4240(2000.

[18] A. L. Lin, A. Hagberg, A. Ardela, M. Bertram, H. L. Swinney,
and E. Meron, e-print nlin-sys/0003047.

[19] J. M. Gambaudo, J. Diff. Eqn&.7, 172(1985.

[1] J. Guckenheimer and P. HolmeshNionlinear Oscillations, Dy-
namical Systems and Bifurcations of Vector Fiel8gringer-
Verlag, New York, 1988

[2] H. Bai-Lin, Chaos(World Scientific, Singapore, 1983

[3] P. Bak and J. von Boehm, Phys. Rev2B 5297(1980.

[4] L. N. Bulaevskii and D. I. Khomskii, Sov. Phys. JEBR, 971
(1978.

[5] M. Lowe and J. P. Gollub, Phys. Rev. 34, 3893(1985.

[6] T. C. Lubensky and K. Ingersent, iRatterns, Defects and [20] A. Lin and H. L. Swinney(unpublished
Microstructures in Nonequilibrium System&ol. 121 of [21] F. H. Busse and K. E. Heikes, Sciern2@8 173(1980.

NATO Advanced Study Institute Series E: Applied Science$22] Y. Tu and M. C. Cross, Phys. Rev. Le®9, 2515(1992.
edited by D. WalgraefMartinus Nijhoff, Dordrecht, 1987 p. [23] R. Gallego, M. San Miguel, and R. Toral, Phys. Rev5&
48. 3125 (1998; R. Gallego, M. San Miguel, and R. Toral,

[7] P. Coullet, Phys. Rev. Letk6, 724 (1986. Physica A257, 207 (1998.

[8] H. Riecke, J. D. Crawford, and E. Knobloch, Phys. Rev. Lett.[24] D. Walgraef, Spatio-Temporal Pattern Formatio(Springer-
61, 1942(1988. Verlag, New York, 1998

[9] D. Walgraef, Europhys. Letf, 485(1988. [25] A. A. Andronov, A. A. Vitt, and S. E. Khaikin,Theory of

[10] I. Rehberg, S. Rasenat, J. Fineberg, M. De La Torreelja Oscillators (Pergamon Press, Oxford, 1996
and V. Steinberg, Phys. Rev. Le@l, 2449(1988. [26] S. C. Mueller, P. Coullet, and D. Walgraef, Chaés439
[11] P. Coullet and D. Walgraef, Europhys. Let, 525 (1989. (1994).

[12] R. Montagne, E. Hermalez-Gar@m, and M. San Miguel,
Physica D96, 47 (1996; M. San Miguel and R. Toral, in
Instabilities and Nonequilibrium Structures ,Védited by E.
Tirapegui, J. Marnez, and R. TiemaniiKluwer Academic
Publishers, Dordrecht, 2000p. 35.

[13] P. Coullet and K. Emilsson, Physica@l, 119(1992.

[14] C. Elphick, A. Hagberg, and E. Meron, Phys. Rev. L&,
5007 (1998; Phys. Rev. B59, 5285(1999.

[15] V. Petrov, Q. Ouyang, and H. L. Swinney, Natuitendon
388, 655(1997.

[27] P. S. Hagan, SIAMSoc. Ind. Appl. Math. J. Appl. Math.42,
762(1982.

[28] T. Yamada and Y. Kuramoto, Prog. Theor. Phg§, 2035
(1976.

[29] S. Rica and E. Tirapegui, Physica48, 396 (1991J).

[30] L. Kramer, I. Aranson, and A. Weber, Physica 33, 376
(1991.

[31] L. M. Pismen and A. A. Nepomnyashchy, Physicéb®) 183
(1992.

[32] P. Coullet, L. Gil, and J. Lega, Phys. Rev. Lef2, 1619

[16] A. L. Lin, V. Petrov, H. L. Swinney, A. Ardelea, and G. F. (1989.
Carey, inPattern Formation in Continuous and Coupled Sys- [33] H. Chafeand P. Manneville, Physica 224, 348 (1996.

056218-9



