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Transition from oscillatory to excitable regime in a system forced at three times
its natural frequency
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The effect of a temporal modulation at three times the critical frequency on a Hopf bifurcation is studied in
the framework of amplitude equations. We consider a complex Ginzburg-Landau equation with an extra
quadratic term, resulting from the strong coupling between the external field and the unstable modes. We show
that, by increasing the intensity of the forcing, one passes from an oscillatory regime to an excitable one with
three equivalent frequency-locked states. In the oscillatory regime, topological defects are one-armed phase
spirals, while in the excitable regime they correspond to three-armed excitable amplitude spirals. Analytical
results show that the transition between these two regimes occurs at a critical value of the forcing intensity. The
transition between phase and amplitude spirals is confirmed by numerical analysis and it might be observed in
periodically forced reaction-diffusion systems.
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I. INTRODUCTION

In many cases, the nucleation of spatio-temporal patte
is associated with continuous symmetry breaking, and th
patterns are thus very sensitive even to small perturbation
external fields. Perturbations may be induced by imperf
tions of the system itself~e.g., impurities!, of the geometrical
setup~e.g., the boundary conditions!, of the control param-
eters, etc. In addition, external fields may induce spatia
temporal modulations of the control or bifurcation para
eters. In fact, spatially or temporally modulated systems
very common in nature, and the effect of external fields
these systems has been studied for a long time. As a wa
example, the forcing of a large variety of nonlinear oscil
tors, from the pendulum to Van der Pol or Duffing oscill
tors, has led to detailed studies of the different temporal
haviors that can be obtained. It has been shown that reso
couplings between the forcing and the oscillatory modes m
lead to several types of complex dynamical behaviors,
cluding quasiperiodicity, frequency lockings, devil’s sta
cases, chaos, and intermittency@1,2#.

In equilibrium systems, the importance of spatial modu
tions has been known for a long time. For example, in
case of spatial modulations occurring in equilibrium crysta
such as spin or charge-density waves, the constraint imp
by the periodic structure of the host lattice leads to the n
commonly known commensurate-incommensurate ph
transitions. The transition from the commensurate pha
where the wavelength of the modulated structure is a m
tiple of the lattice constant, to the incommensurate one
curs via the nucleation of domain walls separating doma
that are commensurate with the host lattice@3,4#.

In nonequilibrium systems, the systematic study of
influence of external fields on pattern-forming instabilities
more recent. It has been first devoted to instabilities lead
to spatial patterns. For example, the Lowe-Gollub exp
ment@5# showed that, in the case of the electrohydrodynam
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instability of liquid crystals, a spatial modulation of the b
furcation parameter may induce discommensurations, inc
mensurate wavelengths, and domain walls. The similari
with analogous equilibrium phenomena rely on the fact th
close to this instability, the asymptotic dynamics is describ
by the minimization of a potential@6,7#.

In the case of self-oscillatory systems, however, origi
effects occur as a consequence of the nonrelaxational c
acter of the dynamics. In particular, for wave bifurcation
unstable standing waves, or two-dimensional wave patte
may be stabilized by pure spatial or temporal modulations
suitable wavelengths or frequencies@8–11#. The case of pure
temporal modulations in oscillating extended systems
been considered theoretically@13,14# and in experiments on
chemical systems forced by periodic illumination@15–18#.
The study by Coullet and Emilsson of forced Hopf bifurc
tions is based on amplitude equations of the scalar Ginzb
Landau type. They considered periodic temporal modu
tions of frequencyve5(n/m)(v02n), where (n/m) is an
irreducible integer fraction,v0 is the critical frequency of the
Hopf bifurcation, andn is a small frequency shift. Such forc
ings break the continuous time translation down to discr
time translations, and the corresponding amplitude equat
become

] tA5~m1 in!A1~11 ia!¹2A2~11 ib!AuAu21gnĀn21

~1!

(Ā stands for the complex conjugate ofA). In the nonforced
case (gn50) and for zero-frequency shift (n50), this dy-
namical system is of the relaxational type fora5b50. In
more general situations, the system follows a nonrelaxatio
dynamics @12#. If the forcing intensitygn is sufficiently
strong, this dynamics admits asymptotically stable unifo
steady states, corresponding to frequency-locked soluti
There aren different frequency-locked solutions, which on
differ by a phase shift of 2p/n. These solutions are alway
stable in the large forcing limit forn51,2,3,4, the so-called
©2001 The American Physical Society18-1
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strongly resonant cases. In this regime, the dynamics
sembles some sort of excitability. The locked solutions m
undergo various types of instabilities@13#. One of them is of
phase type and occurs when 11ab is sufficiently negative.
In this case, competition between phase instability and fo
ing leads to the formation of stripes or hexagonal patte
with their associated topological defects. If the forcing
decreased, these structures break down through sp
temporal intermittency@13#. On the other hand, in the phas
stable regime, frequency-locked solutions may undergo a
riety of bifurcations when forcing is decreased, leading
oscillation, quasiperiodicity, or chaos@19#.

The equivalence between the different frequency-loc
states makes possible the formation of stable inhomogen
structures. These structures are composed of domains o
locked states separated by abrupt interfaces. Nonrelaxat
dynamics may induce interface motion and, in particular,
formation of n-armed spirals, each arm corresponding to
different frequency-locked solution.

These phenomena were studied in great detail by Cou
and Emilsson, forn51 and n52, in one- and two-
dimensional systems@13#. The casen54 has been consid
ered theoretically in@14#. Experimentally, resonant phas
patterns associated with frequency locking have been
scribed for a periodic forcing of the Belousov-Zhabotins
chemical reaction forn52 @17# andn54 @18#. Forn53, the
existence of three-armed rotating spirals in two-dimensio
systems is only briefly mentioned in@13#. Experimental ob-
servations of frequency locking forn53 are also briefly dis-
cussed in@15,16#. In these experiments, patterns with thre
phase domains shifted by 2p/3 are observed@20#. It is the
aim of this paper to study the case of resonant forcing
n53 in more detail, and especially the transition from pha
spirals to amplitude spirals. The interest of this study
threefold. First, it confirms the robustness of the Ginzbu
Landau dynamics, which is recovered at low forcing, with
its complexity and its particular sensitivity to kinetic coef
cients. Second, it presents original dynamical behavior in
excitable regime. This behavior presents interesting an
gies with Rayleigh-Be´nard convection in a rotating cell, de
scribed by three-mode dynamical models@21–23#. Third, it
could be a useful framework for the interpretation of detai
experiments on the 3:1 resonant forcing of a chemical sys
@20#.

The paper is organized as follows. The dynamical mo
and its uniform asymptotic solutions are presented in Sec
Section III is devoted to the description of the dynamics
terms of phase equations. The properties and possible d
opment of front and spiral solutions are discussed in Sec.
Numerical results, for one- and two-dimensional systems,
presented in Sec. V and conclusions are drawn in Sec. V

II. UNIFORM SOLUTIONS

Consider an extended system undergoing a Hopf bifu
tion at zero wave number, and subjected to a periodic t
poral modulation of frequencyve53v0. Sufficiently close
to the bifurcation, its dynamics may be reduced to the f
lowing complex Ginzburg-Landau equation@24#:
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] tA5mA1~11 ia!¹2A2~11 ib!AuAu21gĀ2, ~2!

whereg>0 ~the caseg,0 follows by changingA→2A) is
proportional to the external field intensity. The other para
eters are standard@13,24#. We will restrict ourselves to this
case of resonant forcing (n50). A slightly off-resonant forc-
ing is known to induce a richer dynamical behavior@19#
whose characterization for a spatially extended system is
yond the scope of this paper.

We look now for uniform solutions. By dropping the sp
tial derivative terms, the corresponding uniform equatio
are, in phase and amplitude variables@A5R0(t)eiF0(t)#,

Ṙ05mR02R0
31gR0

2 cos 3F0 ,

Ḟ052bR0
22gR0 sin 3F0 . ~3!

If we look at the stationary solutions~fixed points!, Eqs.~3!
give

~11b2!R0
42~2m1g2!R0

21m250, ~4!

from which the amplitudes of the uniform solutions are giv
by

R6
2 5

1

2
~11b2!@2m1g26Ag414mg224m2b2#. ~5!

Such solutions exist provided thatg.gc , with

gc
252m~A11b221!. ~6!

Note that forb50 these solutions exist for any nonvanishin
forcing. We will consider the case ofbÞ0 for which these
solutions appear at a finite value of the forcing. Once
amplitude is determined by Eq.~5!, the phase can be ob
tained from the stationary version of Eqs.~3!:

FIG. 1. Nullclines and fixed points of the forced Ginzbur
Landau equation forg5b51, m50.25 in theR,f plane. Black

arrows indicate the dynamical flow along the nullclineṘ50, while

gray arrows indicate the dynamical flow along the nullclineḞ50.
8-2
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cos 3F05
R0

22m

gR0
, sin 3F05

2bR0

g
. ~7!

Each value ofR05R1 ,R2 gives rise to three solutions fo
the phaseF0 which only differ by a phase shift of 2p/3.
Hence, for g.gc the system has six uniform solution
(F1

u ,F2
u ,F3

u)[(F1
u ,F1

u12p/3,F1
u14p/3) corresponding
ar
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em
t
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a
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to R2 and (F1
e ,F2

e ,F3
e)[(F1

e ,F1
e12p/3,F1

e14p/3) cor-
responding toR1 . A linear stability analysis shows that th
F i

u are always linearly unstable whereas theF i
e are stable for

ubu,A3. The threeF i
e solutions are called the frequency

locked solutions. These become oscillatory unstablek
50, vÞ0) for ubu.A3 in the range of forcing amplitude
gc&g1,g,g2, where
g15Agc
21

m

2~3b221!
@4A11b2~123b2!17A3b32b213A3b25#,

g25Am~11b2!/2. ~8!
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In the case in which the frequency-locked solutions
stable, we can show that the system behaves as an exc
one: let us construct the nullclines of the dynamical syst
~3!, defined as the curvesṘ050 andḞ050, and represen
them in Fig. 1 forg5b51, m50.25, or in Fig. 2, forg
5b50.01,m50.25. In both figures, it is easy to see that t
R2 states~labeledu) are unstable, while theR1 states~la-
belede) are stable for small perturbations. However, for p
turbations larger than a well-defined threshold, the latter
unstable and the system makes an excursion in the p
space, before reaching another, equivalent, steady state
a form of excitability. Forg,gc , there are no fixed points
of Eqs.~3! and asymptotic solutions correspond to tempo
oscillations of the limit cycle type. Forg50, the limit cycle
is a circle that becomes deformed for 0,g,gc ~see Fig. 3!.
On increasingg, the period of the oscillations increases a
diverges forg→gc . The stability of these oscillatory solu

FIG. 2. Nullcline Ṙ50 in the complexA plane. Along this

nullcline the fixed pointsu ande are determined byḞ50. Param-
eter values areg5b50.01,m50.25. Note that for these paramet
valuesR1'R2 . Arrows indicate the dynamical flow, with long
arrows indicating the excitable excursions associated with a he
clinic trajectory.
e
ble
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tions can be better analyzed in the framework of phase eq
tions that we will develop in the next section.

The transition between locked and oscillatory states
similar to the Andronov–van der Pol bifurcation@25#, which
appears in several types of excitable systems@26#. In fact, on
decreasing the amplitude of the forcing, stable and unsta
locked states merge via inverse saddle-node bifurcatio
which give rise to limit cycle oscillations. Note that we hav
here three pairs of fixed points merging, instead of just o
pair in classical cases. Wheng approachesgc from below,
the period of the oscillations diverges as (gc2g)1/2 showing
some kind of critical slowing down. On the other hand, wh
g.gc , small perturbations around the stable states de
while sufficiently large perturbations put the system on

o-

FIG. 3. Uniform solutions of Eq.~3! for several values of the
forcing parameterg. System parameters arem51, b522.0 ~so
gc51.57). Note that forg,gc , uniform solutions are of the limit
cycle type, whereas forg.gc they become fixed points.
8-3
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heteroclinic trajectory that goes from a stable fixed point t
different, but equivalent fixed stable point through the exc
ability threshold. The intensity of the perturbations leading
a heteroclinic trajectory decreases wheng approachesgc ,
and this phenomenon reflects a type of excitable regime

All these features can be analytically shown in the lim
ing caseb,g!m. In this limit, and taking into account tha
gc.bAm, the adiabatic elimination of the amplitude in E
~3! leads to the phase equation

Ḟ052Am~gc1g sin 3F0!, ~9!

from which the excitable stable steady states are given
sin 3Fi

e52gc /g and cos 3Fi
e.0, and the three unstabl

steady states satisfy sin 3Fi
u52gc /g and cos 3Fi

u,0, i
51,2,3. In this case, the threshold of the perturbation lead
to excitability is thus given by

DF5uF i
e2F i

uu.
p

3
2

2

3

gc

g
. ~10!

Equation~9! describes a relaxational motion of a fictitiou
test particle in a potential,

Ḟ052gcAm
]V~F0!

]F0
, ~11!

where the potential is

V~F0!5F02
g

3gc
cos 3F0 . ~12!

This potential picture gives a framework to describe the
furcation atg5gc in the language of phase transitions. In t
caseg,gc , the potential is unbounded and has no lo
minima. As a consequence, the motion is such that the p
F0(t) decreases monotonically and the test particle does
stop in any selected value of the angle. When conside
modulus 2p, the trajectory is a periodic one,F0(t1T)
5F0(t)12p, with a period T5(2p/Am)(gc

22g2)21/2

which diverges asT;(2e)21/2 when g→gc
2 with e

5g/gc21. As in mechanical problems, it is possible to d
fine a probability density function,P(F0), for the angle vari-
able as proportional to the time the particle spends in
neighborhood of any value of the angle~in other words, the
probability is inversely proportional toḞ0). This probability
density functionP(F0) develops three peaks which sharp
as g increases, indicating three preferred values for
angle. This shows that the characteristic time around e
minimum increases forg→gc and actually it diverges as
(2e)21/2. However, for all values ofg,gc , the dynamics is
such that none of the preferred values for the angle is a
ally selected since the system moves continuously from
to another. In that sense, we can say that there is a dynam
restoring of the angular symmetry.

The situation is quite different forg.gc . In this case, the
potentialV(F0) develops local minima which, at lower or
der in e, are F1

e5p/21(A2/3)e1/2, F2
e5F1

e12p/3, F3
e

5F1
e14p/3. These minima correspond to the thr
05621
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frequency-locked solutions. The relaxational motion in t
potential is such that for each trajectory, and depending
the initial condition, the test particle selects asymptotica
one of the local minima and the angular symmetry is n
broken. The probability density function for that particul
trajectory becomes ad function centered around the select
value of the angle. For an ensemble of different initial co
ditions, the probability density function is a sum of threed ’s,
P(F0)5 1

3 ( i 51d(F02F i
e).

As usual, the transition between the symmetric and
symmetry-broken phases can be characterized by an o
parameter. For an angular variable, the order param
should be some periodic function, such as the mean valu
the sine,̂ sin(F0)& ~other periodic functions give similar re
sults!. For g,gc it is ^sin(F0)&50, whereas forg.gc that
average sets into one of three possible values correspon
to the selected phase. Since its value in any phase is diffe
from zero atg5gc , the order parameter changes discontin
ously at the transition point and, following the standard n
tation, the transition can be classified as a first-order one
this mean-field description, and according to the discuss
above, the transition implies a critical slowing down with
characteristic time diverging with an exponent1

2 both below
and above the transition point. Equivalently, one can cha
terize the transition pointg5gc by the fact that the fre-
quency of the motion tends to zero continuously at that po
and stays equal to zero forg>gc . In an extended system
one could observe coexistence of the three phases at diffe
locations in space, as described later in Fig. 6. Furtherm
in any finite system, there is no true phase transition and
sharp behavior predicted by this simple mean-field analy
gets smeared out and thed-type probability density functions
for g.gc have a finite width. Evidence of this fact is give
later from our numerical simulations~see the lower row of
Fig. 7!.

III. PHASE APPROXIMATION

In this section, we present several phase equations,
one valid in a different region of parameters. As mention
in the preceding section, phase equations can be used to
lyze the stability of the uniform patterns.

A. The oscillatory regime

In the oscillatory regime (g,gc), the phase dynamics ca
be obtained by perturbing the uniform solutio
„R0(t),F0(t)… and writing R5R0(t)1r(rW,t), F5F0@ t

1f(rW,t)#. Following Hagan@27#, the adiabatic elimination
of the amplitude perturbations in the regimeb,g!m leads to
the following phase dynamics:

] tf5~11ab̄!¹2f1k~¹W f!21•••, ~13!

whereT is the period of the oscillations, and
8-4
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b̄5

E
0

T

dt
2bR01g sin 3F0

2R02g cosF0
Ḟ0

2

E
0

T

dtḞ0
2

,

k5

E
0

T

dtS 2bR01g sin 3F0

2R02g cosF0
2a D Ḟ0

3

E
0

T

dtḞ0
2

. ~14!

For g→0, one recovers the usual Burgers equation

] tf̄5~11ab!¹2f̄1~a2b!~¹W f̄ !21••• ~15!

with f̄5bmf.
Hence, in the regime where 11ab̄.0, stable~phase!

spiral waves may be expected, with wave number prop
tional to k, and thus depending on the characteristics of
oscillations@27,28#. In this regime, the qualitative behavio
and interaction between these topological defects should
be almost insensitive to the forcing@29–31#. Furthermore, in
the regime where 11ab̄,0, defect-mediated turbulenc
should also be expected@32#. In the oscillatory regime, the
system presents thus qualitatively the same complexity
the same spatio-temporal behaviors as self-oscillating
tems. Only quantitative aspects are affected by the forcin

B. The excitable regime

In the excitable regimeg.gc , and the phase dynamic
can be obtained in the limitb,g!m, b!1 by eliminating
adiabatically the amplitude of the field. Taking into accou
that, in this regime,R2.m andgc.ubuAm, we are left with
the following phase equation:

] tF52Am~gc1g sin 3F!1~11ab!¹2F2~a2b!

3~¹F!21
a2~11b2!

2m
¹4F. ~16!

Besides the homogeneous solutions discussed in the pre
ing section, this equation admits front solutions connect
stable states asymptotically atx56`. In the casea5b
50, the phase equation is relaxational and the fronts con
two states with the same value of the potential and are, th
fore, stationary. In the casea5bÞ0, the phase equation i
still relaxational but now the steady states have a differ
value of the potential and the front moves. Moreover, wh
aÞb there is a purely nonpotential induced front motio
Equation~16! will be used in the next section as the starti
point to compute the velocity of the front solution.

In order to study pattern-forming instabilities, we can u
Eq. ~16! in the limit of small F. Expanding sin 3F up to
linear order in F, we are led to a damped Kuramoto
Sivashinsky phase equation@13#. It follows that frequency-
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locked solutions are stable for 11ab.0. If 11ab,0, a
pattern-forming instability of the locked states would occ
for @13#,1

m.36g2
a4~11b2!3

~11ab!4
. ~17!

Since, in this regime,g.gc , a necessary condition for thi
instability is thus

~11ab!4.72~A11b221!a4~11b2!3, ~18!

and this condition cannot be realized in the$11ab,0%
domain. Therefore, the frequency-locked solutions are sta
so that pattern-forming instabilities are ruled out within t
phase approximation. It is also possible to prove that
locked solutions are always stable in the limit of large fo
ings @13#.

IV. FRONTS AND SPIRALS

For g.gc , the forced Ginzburg-Landau equation po
sesses three equivalent excitable steady states. The exci
ity mechanism described in the preceding section provide
natural way of building fronts between these steady sta
Despite the equivalence of the fixed points, such fronts
expected to move, as a result of the nonpotential characte
the dynamics.

A. One-dimensional systems

Consider a front solution of Eq.~16!, e.g., F12(x2vt),
joining the states 1~at x→2`) and 2~at x→1`), such that
F2

e.F1
e . Its velocity may be computed along the standa

procedures, and is such that~at leading order in perturbation!

v5

2pgcAm13~a2b!E
2`

1`

~]xF12!
3

3E
2`

1`

~]xF12!
2

. ~19!

Hence, fora.b, the frontsF12, F23, andF31 move to the
right, while the frontsF21, F13, andF32 move to the left.
Hence, any domain of one steady state, embedded in a
main of another one, either expands or shrinks, leaving
system in one steady state~domains of 2 embedded into 1,
into 2, and 1 into 3 shrink while domains of 1 into 2, 2 in
3, and 3 into 1 expand!. However, a succession~from left to
right! of domains with states in the order 1, 2, 3, 1, e
moves as a whole to the right. When it is in the order 1, 3
1, etc., it moves as a whole to the left~see Fig. 4!.

B. Two-dimensional systems

In two-dimensional systems, straight linear fronts ha
the same behavior as in one-dimensional systems. Furt

1This corrects the misprint of Ref.@13# in e andk0 after Eq.~28!.
8-5
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GALLEGO, WALGRAEF, SAN MIGUEL, AND TORAL PHYSICAL REVIEW E64 056218
more, sets of two inclined fronts separating domains w
different steady states also move away or annihilate, leav
the system in one steady state only~see Fig. 5!.

New phenomena may arise when the three steady s
coexist in the system. In this case, three fronts, which se
rate the respective domains, coalesce in one point~a vertex!.
The three fronts are expected to rotate around this point.
result is a rotating spiral whose angular velocity increa
with the forcing amplitude. Spirals corresponding to s
quences of states in the order 1→2→3 or 1→3→2 around
the center have opposite senses of rotation. Isolated ver
remain immobile, but nonisolated ones have a dynam
evolution induced by mutual interactions, which may ev
lead to the annihilation of counter-rotating spirals. This d
namical behavior is illustrated by the results of the numer
analysis presented in the next section.

The situation is similar to that observed in systems w
competing fields. For example, in the context of fluid dyna
ics, a three-mode model has been proposed to s
Rayleigh-Bénard convection in a rotating cell@21,22#. The
fields represent the amplitudes of three sets of convec
rolls oriented 60° from each other. In the two-dimension
system, vertices may form when the three different types
roll domains meet at one point~notice that this is not pos
sible in one-dimensional systems@23#!. Then, the nonpoten
tial dynamics induces the rotation of the interfaces arou
the vertices preventing the system from coarsening. At lo
time scales, the vertices diffuse throughout the system.

V. NUMERICAL RESULTS

In this section, we present numerical results in two spa
dimensions which illustrate the various dynamical regim
described in the preceding sections. We have solved num

FIG. 4. Plot of the phase field in the excitable regime in 1
Note the existence of three homogeneous phase states. The a
indicate the direction of motion of the several fronts. Parame
values arem51, a52, b520.2, g50.5.
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cally the forced CGLE in two spatial dimensions by using
pseudospectral method with periodic boundary conditio
We discretize the system in a square mesh of 2563256
points. Cases within and beyond the validity of the pha
approximation and with 11ab.0 and 11ab,0 are con-
sidered. In all cases, the parameterm is taken fixed,m51. In
Table I, we summarize the parameters chosen for each o
cases studied.

We start our discussion considering cases in which
phase approximation is valid (b,g!m). We first consider a
case below the Benjamin-Fair~BF! line (11ab.0) choos-
ing parameter values$a52, b520.2; gc50.2%. This case
corresponds to thefrozen statesregime in the phase diagram
of the CGLE with no forcing@33#. In Fig. 6, we show the
modulus and the phase of the complex fieldA for values ofg
corresponding to no forcing, oscillatory,g.gc , and excit-
able regimes. As expected@33#, spiral defects surrounded b
shock lines occur when there is no forcing. When t
strength of the forcingg is increased, but still being below
the critical valuegc ~oscillatory regime!, the phase dynamics
does not change significantly. However, amplitude spir
appear in the modulus of the field. The splitting of the pha
into three locked states is observed approximately at the
dicted theoretical value of the forcinggc . For a value of the
forcing parameter slightly greater thangc , we observe anni-
hilation of vertices until a homogeneous state is reached.
values ofg close togc , the motion of the walls can be ver
slow with patterns that might look stationary in short tim

.
ows
r

FIG. 5. Examples of motion of pairs of inclined fronts separ
ing domains with equivalent steady states of the forced Ginzbu
Landau equation forg.gc .
TABLE I. Parameters of the various cases discussed in Sec. V.

m a b gc

Phase approx.
valid? 11ab Regime (g50) Figure

1.0 2.0 20.20 0.20 Yes .0 Frozen states 6, 7
1.0 5.5 20.20 0.20 Yes ,0 Frozen states 8

1.0 2.0 20.76 0.72 No ,0 Phase turbulence 9
1.0 0.0 21.80 1.45 No .0 Defect turbulence 10, 11
8-6
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scales of observation. For larger values of the forcing par
eter, the nonrelaxational dynamics is able to stop vertex
nihilation and therefore the coarsening process. The sys
remains in a self-sustained dynamical state dominated
three-armed rotating spirals.

Motivated by the way in which experimental data for 2
or 4:1 resonant forcing are presented in@17,18#, we show in
Fig. 7 a phase portrait in the complex plane ofA, obtained
from the snapshots shown in Fig. 6. We also include
corresponding histograms for the values of the phase oA.
This representation of data clearly displays the transit
from the oscillatory to the excitable regime. The phase p
trait gives a demonstration, for the spatially extended syst
of the deformation of the limit cycle described in Fig.
Furthermore, it enlightens the transition from one-armed s
rals, which are generic defects of unforced oscillations,
three-armed spirals, which are generic defects of the loc
states. Effectively, atg50, one observes typical phase sp
rals associated with the monotonic phase variations. In
case, there are no fronts separating different states of
system. Wheng increases, the phase variable spends an
creasing amount of time around the precursors of the loc
states, as reflected in the histograms of Fig. 7. This manif
itself in the appearance of fuzzy three-armed patterns aro
vertices of the modulus of the fieldA ~see, for example, Fig
8!. For g slightly larger thangc , the system has undergon

FIG. 6. Modulus and phase of the complex fieldA in the cases
g50 ~no forcing!, g,gc ~oscillatory!, g.gc , andg.gc ~excit-
able!. Parameter values arem51, a52, b520.2 ~so that gc

.0.2), andg50.1 (0.25) for the oscillatory~excitable! case.
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the transition from oscillatory to locked behavior and o
may observe spirals generated by fronts between diffe
stable steady states of the system. This transition is in
the spatial unfolding of the evolution of the phase portr
displayed in Fig. 7 for increasingg, which in turn corre-
sponds to the mean-field description of the transition giv
after Eq.~12!.

Above the BF line (11ab,0), we choosea55.5 and
keep the rest of the parameters as before. The most note
thy difference from the previous case is the existence
asymptotic frozen states for all values ofg within the oscil-
latory regime, even close to the critical forcinggc ~see Fig.
8!. Below gc , we observe frozen targets while close to t
transition (g'gc) the frozen patterns hold three locke
phase states but without vertices. The particular geometr
these patterns is due to the emergence of locked phase s
As expected, large enough values of the forcing param
give rise to a time-dependent dynamics with three-armed
rals rotating around vertices.

Beyond the validity of the phase approximation, differe
phenomena may occur. In particular, pattern-forming ins
bilities may take place for small and moderate values of
forcing parameter above its critical valuegc . In the case
above the BF line with parameters$a52, b520.76; gc
50.72% ~phase turbulenceregime in the absence of extern
forcing!, oscillating targets that coexist with vertices are o
served close to the transition~see Fig. 9!. Pulses in the
modulus ofA form concentric rings at the center of the ta
gets with an amplitude which decays in space as they pro
gate away from the center, while the phase oscillates p
odically between2p andp.

We also considered, beyond the validity of the phase
proximation, a case below the BF line. Our choice of para
eters $a50, b521.8; gc51.45% corresponds to adefect
turbulence regime at g50. Since 11ab.0, well-
developed spirals can be observed~see Fig. 10!. The modu-
lus of the field is characterized forg,gc by amplitude spi-
rals that rotate around defects, whereas the phase sho
behavior similar to the one forg50. These three-armed am
plitude spirals become well developed forg.gc correspond-
ing to the emergence of the three possible homogene
phase values. On the other hand, sinceubu.A3, and accord-
-

FIG. 7. Phase portrait~upper
row! in the complex plane of the
field A and corresponding histo
grams ~lower row! of the phase
field. Plots have been made from
the snapshots of Fig. 6.
8-7
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ing to the discussion of Sec. II, there exists a range of va
of the forcing parameter for which the locked solutio
present an oscillatory instability at zero wave number. T
is seen in Fig. 11. This instability is observed after the an
hilation of two counter-rotating defects. In the squared
gion identified in the figure, we observe the developmen
an oscillating target corresponding to the homogeneous
cillation. From Fig. 11~d! onwards the oscillating region
shrinks and disappears under the invasion of neighbo
spirals.

It is important to emphasize that forg@gc , the
asymptotic state is essentially the same regardless of the
ferent dynamical regimes that exist forg50 and different
parameter values. The phase is locked to either of the t
values predicted theoretically, with interfaces between th
three locked states rotating around vertices. This rotat
which is due to the underlying nonrelaxational dynami
inhibits the coarsening process which would take pla
through vertex annihilation. The vertices are essentia
pinned and the resulting pattern is, on the average, time
riodic at relatively short time scales. When the phase
proximation is valid, the locked phase states are seen t
stable, but excitable spirals may be absent near the trans
for system parameters such that 11ab,0. Beyond the va-
lidity of the description based on the phase approximati
instabilities of the homogeneous phase states may take p
giving rise to complex patterns.

FIG. 8. Same as in Fig. 6. Parameter values arem51, a
55.5, b520.2 (gc.0.2), andg50.1 (0.25) for the oscillatory
~excitable! case.

FIG. 9. Same as in Fig. 6. Parameter values arem51, a
52, b520.76 (gc.0.72), andg50.5 (1.5) for the oscillatory
~excitable! case.
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VI. SUMMARY

Temporal forcing of nonlinear self-oscillating extende
systems strongly couples with the unstable modes assoc
with a Hopf instability. Such forcings modify the charact
of the bifurcation and the resulting spatio-temporal patter
as observed in different resonant regimes of a forc
reaction-diffusion system@15–18#. In this paper, we have
studied the particular case of a resonant temporal modula
at three times (n53) the critical frequency of the Hopf bi
furcation.

For forcing amplitudesg below a critical valuegc , the
system is in an oscillatory regime, where the spatio-tempo
behavior strongly depends on the parameters of the ass
ated Ginzburg-Landau equation. Uniform solutions cor
spond to temporal oscillations of the limit cycle type a
topological defects correspond to one-armed phase spi
When g approachesgc from below, the period of the limit
cycle diverges as (gc2g)1/2 showing some type of critica
slowing down. For forcing amplitudes above the critical on
the system is in a phase-locked regime with three equiva

FIG. 10. Same as in Fig. 6. Parameter values arem51, a
50, b521.8 (gc.1.45), andg51 (1.6) for the oscillatory~ex-
citable! case.

FIG. 11. Snapshots of the modulus of the field in a regime
parameters where an oscillatory instability at zero wave num
occurs. The square encloses an oscillating region. Time incre
when going from~a! to ~d!.
8-8
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steady states. The bifurcation occurring atg5gc can be de-
scribed, in a mean-field approximation, as a first-order ph
transition between a motion in which the temporal average
the phase is zero (g,gc) to one with a nonzero averag
phase (g.gc). We have given a phase approximation d
scription of both regimes for a spatially extended system

As in then51 andn52 cases of strongly resonant for
ings, a form of excitability may also be observed. Howev
contrary to then51 and n52 cases, no pattern formin
instability of the frequency-locked states occurs, in this ca
for parameter values for which the phase approximation
valid. Due to the nonrelaxational character of the dynam
fronts between equivalent steady states move. The resu
that, when the three equivalent steady states coexist in
system, three armed rotating spirals are generated aro
vertices where the fronts separating each domain m
Hence, we predict a transition from one-armed phase sp
to three-armed excitable amplitude spirals, which occ
when the forcing amplitude passes through a critical va
gc . We have confirmed and described this transition by
merical analysis of the corresponding complex Ginzbu
ce

tt

.
s-
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Landau equation for different parameter values which co
spond to qualitatively different regimes of the phase diagr
of this equation when there is no forcing.

There are a number of analogies of our results forg
.gc and the spatio-temporal patterns observed in a mode
rotating Rayleigh-Be´nard convection@23#. In the latter case,
the domains correspond to sets of parallel convection r
with a certain orientation and the vertices to points at wh
fronts separating domains of three preferred orientati
meet. As in the case studied here, the rotation of interfa
around vertices, due to nonrelaxational dynamics, produ
rotating three-armed spirals.
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