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We study domain growth in a nonlinear optical system useful to explore different scenarios that
might occur in systems which do not relax to thermodynamic equilibrium. Domains correspond to
equivalent states of different circular polarization of light. We describe three dynamical regimes: a
coarsening regime in which dynamical scaling holds with a growth law dictated by curvature effects,
a regime in which localized structures form, and a regime in which polarization domain walls are
modulationally unstable and the system freezes in a labyrinthine pattern.

The problem of the growth of spatial domains of differ-
ent phases has been thoroughly studied in the context of
the dynamics of phase transitions: a system is placed in
an unstable state and one considers its relaxation to the
state of thermodynamic equilibrium [1]. This process is
dominated by the motion of domain walls and other de-
fects. It is in this context that seminal ideas of selfsimi-
lar evolution and dynamical scaling were introduced for
nonequilibrium processes. Asymptotic domain growth
laws, with their underlying physical mechanisms, have
been well established, and dynamical scaling has been
generally demonstrated. A growth law R(t) ~ t'/? holds
for dynamics with no conservation law and domains made
of equivalent phases. This law follows from the minimiza-
tion of surface energy, and it has been shown to be robust
against the appearance of point defects in systems with
a discrete number of phases, three dimensional vortices
or chiral domain walls [2]. Other well known growth laws
[1] are R(t) ~ t'/? for systems with conserved order pa-
rameter and R(t) ~ t for nonconserved dynamics with a
metastable phase [3], and also for hydrodynamic systems
in spatial dimension d > 2 [4].

Domain growth in systems that do not approach a final
state of thermodynamic equilibrium is much less under-
stood. For example, the mechanisms underlying a growth
law R(t) ~ t'/5 in pattern forming systems in which the
spatial coupling is non purely diffusive (Swift-Hohenberg
equation) [5] have not been clearly identified. Other gen-
eral issues that need to be considered are the role of
hamiltonian vs. dissipative dynamics [6], the effects of
nonrelaxational dynamics such as one-dimensional mo-
tion of fronts between equivalent states and spiral for-
mation [7], the emergence of localized structures (LS)
[8,9], or transverse instabilities of domain walls leading
to labyrinthine patterns [10].

Driven nonlinear optical systems offer a wealth of op-
portunities for the study of pattern formation and other
nonequilibrium processes in which the spatial coupling
is caused by diffraction instead of diffusion. These sys-
tems are specially interesting because they naturally lead
to the consideration of vectorial complex fields, being the

vector character associated with the polarization of light,
and also because they often support the formation of LS
[11-13]. Such bright light spots are being actively consid-
ered for applications in parallel optical processing. Only
very recently domain growth has been considered in some
of these systems and some growth laws obtained from
numerical simulations have been reported [13-15]. How-
ever, clear mechanisms for the growth laws have often not
been identified, and some of these laws do not correspond
unambiguously to an asymptotic regime. In addition, the
question of dynamical scaling has, in general, not been
addressed.

In this letter we consider a Kerr medium as a clear ex-
ample of a nonlinear optical system in which many of the
issues and scenarios mentioned above can be explored.
We show that after switching-on a pump field, domain
walls are formed which separate regions with different
polarization of light. The dynamical evolution of these
polarization domain walls leads to three different regimes.
For high pump values there is a coarsening regime for
which we demonstrate dynamical scaling with a growth
law R(t) ~ t'/2. For lower pump values this process
is contaminated by the emergence of LS formed by the
collapse of polarization domain walls to a stable bound
structure. In a third regime the system evolves into a
nearly frozen labyrinthine pattern caused by a transverse
modulational instability of the polarization domain wall.
These three qualitatively different regimes have been ex-
perimentally observed in another optical system [12] and
considered in the realm of Swift-Hohenberg models [16].

Our calculations are based on a mean field model
that describes the transverse spatio-temporal evolution
of the two circularly polarized components of the electric
field complex envelope, E and E_, in an optical cavity
filled with an isotropic self-defocusing Kerr medium and
pumped with a linearly polarized real field Ey [17,18]:
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Here 6 is the cavity detuning, and V2 is the laplacian



in the transverse plane. Equations (1) are damped and
driven coupled Nonlinear Schrédinger equations which
can be rewritten as

COF
Oy = —E4 — Zﬁ’ (2)

where F[E,, E_] is a real functional. Therefore, except
for the linear dissipative term, the dynamics can be writ-
ten in Hamiltonian form. This corresponds to a rather
different dynamics than the normal relaxational dynam-
ics considered in systems that approach a state of ther-
modynamic equilibrium. We will study different regimes
for different values of the pump Ej.

Equations (1) admit symmetric (I, = I,_) and asym-
metric (Is4 # Is_) steady state homogeneous solutions,
where I = |EL|?. The homogeneous symmetric solution
is linearly stable for Ey < Ejy 4, while the asymmetric so-
lutions only exist for Ey, < Eos < Ey and they are lin-
early stable for Eg; < Ep . < Ep [18,19]. There are two
equivalent homogeneous stable solutions for Fy . < Fy,
one in which I;; > I, and the other one, obtained
interchanging E, by E_, in which I, < I,_. These so-
lutions are elliptically polarized, but very close to being
circularly polarized, because one of the two circularly po-
larized components dominates. For simplicity we will call
them the right and left circularly polarized solutions. If
the pump field Ey is switched-on from Ey = 0 to a value
Ey > Ey ¢, only the mode with zero wavenumber can ini-
tially grow from the initial condition E1 = 0. One then
expects that either of the two equivalent homogeneous
solutions will locally grow and that domains separated
by polarization walls will emerge. This is indeed the pro-
cess that we study. We note, however, that a solution
with a stripe pattern orthogonally polarized to the pump
exists for Ey > Ep, [17,18]. This pattern solution is
the one obtained by continuity from the homogeneous
symmetric solution through a Turing-like instability. We
have numerically checked that such solution remains sta-
ble for pump values Ey > FEy ., but it is not the solu-
tion approached by the physical process just described of
switching-on the pump to a value Ey > Ep .

We find three different dynamical regimes for Ey, >
Ep,., summarized in fig. 1. For Ey > Ey 2 domains grow
and the system coarsens, for Ey s > Ey > Fy 1 stable LS
are formed, while for Ey; > Ey > Ey . a labyrinthine
pattern emerges. These regimes are better understood
by considering the evolution of an initial isolated polar-
ization droplet: a circular domain of one of the solu-
tions surrounded by the other solution. We find that
the radius of the circular domain varies consistently with
a curvature driven front motion. The normal front ve-
locity v, (eikonal equation) follows a law of the form
vp(r,t) = —y(Ep)k(r,t), where k is the local curvature
of the domain wall and v(FEj) is a coefficient that depends
on the pump field amplitude. For a circular domain we
get dR(t)/dt = —v(Ep)/R(t). In figure 1 we show the
function y(Ey) as obtained from the numerical solution

of egs. (1) in a two-dimensional system for relatively
large initial droplets. Notice that v(Eg) changes sign at
Ey = FEp,1, which indicates a change from droplet shrink-
age to droplet growth.
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FIG. 1. Coefficient v(Eq) as defined in the text. Snapshots
of typical configurations for the total intensity I = I + I_ at
late times are shown for each of the three dynamical regimes.
The vertical lines identify the values of Fg1 = 1.552 and
Eq.» = 1.700.

We first consider the regime of domain coarsening
which occurs for Ey > Ep . In this regime v(Ep) > 0
and an isolated drop shrinks to zero radius. In the general
dynamics starting from random initial conditions around
E+ = 0, sharp domain walls are initially formed and
they evolve reducing their curvature. The system ap-
proaches a final homogeneous state in which one of the
two circularly polarized solutions fills the whole system.
In order to characterize the coarsening process we have
calculated the pair correlation function of Iy and I_, de-
fined as Cp, (r,t) = (I (x +1r,t)]L(x,1)). The average
(...) is performed over the set of points x (and addition-
ally over a set of 100 different random initial conditions).
Due to the symmetry of the problem C;, = C;_. = C.
Results for the circularly averaged correlation function
C(r,t) are shown in fig. 2. The mean size L(t) of the do-
mains is calculated as the distance at which C(r,t) takes
half its value at the origin, i.e., C(L(t),t) = $C(0,t). We
obtain a well defined asymptotic growth law L(t) ~ t'/2
that follows from domain wall motion driven by curva-
ture effects. We have further obtained that the dynamics
is selfsimilar, i.e., that there is dynamical scaling. This
is seen in fig. 2 where we plot C(r,t) before and after
rescaling the spatial coordinate of the system with the
characteristic domain size L(t). We observe that curves
for different times in the scaling regime collapse to the
single scaling function after rescaling. These results co-
incide with those obtained for many thermodynamic sys-
tems with nonconserved order parameter [1,2]. We note,
however, that in our case the dynamics does not follow
the minimization of any obvious energy and that surface
tension is not a proper concept for the diffractive spatial



coupling considered in optical systems.
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FIG. 2. a) Spherical averaged correlation function for
EfE 1.8 > Ep at times ¢t = 64.8, 91.8, 118.8, 145.8 and
172.8 and b) after scaling r with the domain size Lz, (t). The
inset shows the domain growth law Ly, (t) ~ /2,

We next address the regime of formation of LS (Eg» >
Ey > Ep1). In this regime, as in the previous case,
v(Eg) > 0, and a large isolated droplet initially shrinks
with a radius decreasing as R(t) ~ t~'/2. However the
shrinkage stops at a well defined final value of the ra-
dius. Initial droplets with a smaller radius grow to this
final stable radius. In the general dynamics following the
switch-on of the pump, domain walls are initially formed.
They first evolve reducing their length as in the coars-
ening regime. But while in that regime a closed loop
disappears, here it collapses to a stable LS formed by a
bound state of the domain wall. The final state is com-
posed of stretched domain walls and LS. To understand
this process is convenient to consider the form of the po-
larization domain walls in a d = 1 geometry, as shown
in figure 3. An isolated d = 1 domain wall is stationary.
We observe that the intensity profiles of the walls do not
approach monotonically the asymptotic value of the ho-
mogeneous state. When several domain walls are created
in the transient dynamics, they interact with each other.
Since the front profiles have oscillatory tails, the interac-
tion between two walls can lead to repulsive forces [8]. As
a consequence, LS formed by bound domain walls can be
formed which stop the coarsening process. These oscilla-
tory tails are less important the larger is Ey (see figure
3). However, we find that for all the values of Ey which
we have explored (up to Ey = 10), this effect is enough to
stop coarsening in d = 1: a frozen pattern state is always
dynamically reached [20]. What happens in our d = 2 sit-
uation is a competition between the d = 1 repulsive effect
between walls and the curvature effect that tends to re-
duce a droplet to zero radius. When the repulsive force is
large enough, it might counterbalance the shrinkage pro-
cess driven by curvature, and thus leads to the formation
of a LS. This happens for Ep1 < Fy < Fy 2. The mech-
anism is the one also discussed in [13]. These structures
can be seen as a hole of I (I_) in the background of
a circularly + - polarized (— - polarized) state, together
with a peak of I_ (I;). Since the oscillatory tails are
larger as E; decreases, the size of the LS decreases with
Ey. We have found a perfect linear dependence of the

radius of the LS with Ey. In figure 4 we show a plot
of a LS together with its transverse profile. Note that
the intensity in the LS is greater than in the surrounding
background.

0 10 20 30 400 10 20 30 40
FIG. 3. d =1 intensity profiles of the polarization domain
wall for two pump values: Eop = 1.2 < Ep,1, Eo =2 > Ep».

FIG. 4. Total field intensity (I+ + I-) of a LS and trans-
verse profile of I and I for Fy = 1.6.

We finally discuss the regime of labyrinthine pattern
formation which occurs for Ey < Fjy 1: switching-on the
pump produces a very dense pattern of domain walls that
repel each other. In this regime v(Ey) < 0, and an iso-
lated droplet of arbitrary small size grows as R(t) ~ t'/2.
In an infinitely large system the droplet would grow with-
out limit, but with periodic boundary conditions it grows
until the domain wall interacts with itself. Repulsion of
the domain wall leads to a labyrinthine pattern as shown
in fig. 5. An independent way of identifying the value
Ey = Ejp,1, below which labyrinthine patterns emerge, is
by a linear stability analysis in d = 2 of the d = 1 domain
wall profile. We have numerically obtained that such flat
domain wall has a transverse modulational instability for
values of the pump amplitude for which vy(Ey) < 0. We
find a longwavelength instability in which arbitrary small
wavenumbers become unstable for Ey < Ep 1 (see fig. 6).
This is reminiscent of the situation described for vecto-
rial Second Harmonic Generation [15]. In physical terms,
both the droplet growth and the modulational instability
indicate that the system prefers to have the longest pos-
sible domain walls, or equivalently the largest possible



curvature. This leads to a nearly frozen state in which
the oscillatory tails of the domain walls prevent their self-
crossing and in which coarsening is suppressed. LS might
form, but their natural tendency to grow is stopped by

surrounding walls.

FIG. 5. Growth of a polarization droplet and creation of a
labyrinthine pattern for Eg = 1.3 < Eo,1. Snapshots at times
t =0, 1000, 2100, 2400, 3200 and 4900.

Y

FIG. 6. Transverse modulational 1nstab111ty for a flat do-

main wall. Eo = 1.4. Snapshots at times ¢ = 0, 400, 600,

860.

In summary, we have described a situation in nonlinear
optics in which many of the generic issues and possible
scenarios of domain growth in nonthermodynamic sys-
tems occur. In spite of the nonrelaxational dynamics we
have found a regime of selfsimilar evolution with a growth
law characteristic of curvature driven motion. In other
regimes, obtained just by changing the pump amplitude,
domain growth is contaminated by the emergence of LS
or suppressed by an instability of the domain wall that
leads to a nearly frozen labyrinthine pattern. Domain
walls and LS are here associated with the polarization
vectorial degree of freedom of light.
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