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Frozen spatial chaos induced by boundaries

Vı́ctor M. Eguı́luz,* Emilio Hernández-Garcı´a, Oreste Piro, and Salvador Balle
Instituto Mediterráneo de Estudios Avanzados IMEDEA† (CSIC-UIB) E-07071 Palma de Mallorca, Spain

~Received 4 June 1999!

We show that rather simple but nontrivial boundary conditions could induce the appearance ofspatial chaos
~that is stationary, stable, but spatially disordered configurations! in extended dynamical systems with very
simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-
dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode
approximation are used to describe the spatially chaotic structures.@S1063-651X~99!01812-7#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

In the past few decades, considerable understanding o
phenomenon of temporal chaos in dynamical systems of
degrees of freedom has been achieved@1–3#. On the other
hand, spatiotemporal chaos in extended dynamical syst
with infinitely many degrees of freedom is currently und
very active investigation@4,5#. It is remarkable however, tha
an area of problems laying somehow between the two
tremes has not received so much attention, namely, pu
spatial chaos as a stationary attractor of extended dynam
systems@6–11#.

The possible existence of this kind of attractors was s
gested by Ruelle@12# in the context of equilibrium phases
He pointed out the parallelism between a time-depend
differentiable dynamical system and the space dependen
equilibrium states in statistical mechanics. He then raised
question as to whether the existence of turbulent crys
could be the natural next step towards complexity after s
tially homogeneous, periodic, and quasiperiodic equilibri
phases have been found. Newell and Pomeau@13# gave some
conditions under which such a turbulent crystal would ex
in pattern-forming systems described by a free energy. T
oretical and experimental work on modulated phases
commensurate-incommensurate transitions@14,15# represent
additional concrete results along these lines.

In the context of fluid dynamics, the existence of spatia
chaotic, but temporally steady solutions would also fill
conceptual gap between two well-studied complex phen
ena: Lagrangian chaos, and Eulerian chaos or turbule
The former refers to the chaotic motion of a fluid parc
which might occur even in laminar and, in three dimensio
steady flows@16–18#. On the other extreme, the road to tu
bulence is usually associated with a hierarchy of instabili
leading to increasingly spatiotemporally chaotic Eulerian
locity fields. Frozen spatial chaos would then refer in t
context to a third possibility: a stationary flow spatially ch
otic in the Euler description.

By now, many extended dynamical systems display
spatial chaos have been identified. Most of the studies
concerned with one dimensionally extended systems. T
are especially suitable to analysis because their steady-
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configurations depend just on the unique spatial coordin
These configurations are solutions of sets of ordinary diff
ential equations~the spatial dynamical system! with the
space variable as the independent variable. The stan
theory of low-dimensional dynamical systems can be use
describe such configurations, by just considering the spa
coordinate as a fictitious time. Rigidly traveling waves wi
spatial chaotic structure can also be considered as a ca
spatial chaos in a moving reference frame@8–10#.

Spatial chaos may appear when thespatialdynamical sys-
tem has a sufficiently high dimensional phase space. T
high dimensionality may arise from either~a! the presence of
high-order spatial derivatives in a single evolution equat
as in the cases of the Swift-Hohenberg equation@19,20#, and
Kuramoto-Sivashinsky and related models@9,11#, ~b! the
coupling of several fields each one satisfying a lower or
differential equation as in excitable media@10# and in ~the
real and imaginary parts of! the complex Ginzburg-Landau
equation@8# which supports chaotic traveling waves, or~c!
explicit space-dependent forcing terms as in@6# or @21#.

Consideration of two-dimensional spatial chaos has b
very scarce. In the absence of a simple connection with c
ventional dynamical systems theory, the very concept
chaos in the spatial configuration should be properly defi
for the general two-dimensional case. A rather complete
malism generalizing dynamical system tools~entropies, di-
mensions, . . .! to multidimensional spatial chaos has be
developed@7,22#, and some examples examined@7,20#. On
the other hand, as the number of dimensions increase
much larger variety of nontrivial boundary condition class
surely leads to a greater richness in the expected prope
of the steady field configurations. A well-posed question
then whether relatively simple boundary conditions may le
to steady spatially chaotic configurations. The main purp
of this paper is to address this question.

In addition to the existence of chaotic spatial configu
tions, it is important also to study their stability in time.
stationary state will only be physically observable if it
stable or at least long-lived. It turns out that the tempo
stability of the stationary solutions is in general unrelated
the stability of these configurations considered as orbits
the spatial dynamical system. In the examples cited abo
there are cases of both stable and unstable space-chaotic
figurations, but instability seems to be more frequent. A
6571 © 1999 The American Physical Society
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consequence, spatial chaos has been generally consider
limited physical relevance.

In this paper we show that rather simple undulated st
like domain shapes can induce, in a very simple nonlin
extended dynamical system, the formation of patterns
are bothspatially chaoticand temporally attracting. The
kind of modulated boundarieswe use could be easily imple
mented in standard experimental pattern-formation setu
such as Faraday waves, convection cells, or open flows
fact, our work was originally motivated by the observatio
in a fluid dynamics experimental setup consisting of a p
odic array of pipe bends, that the transverse profile of
steady flow does not necessarily repeat itself with the sa
periodicity of the array@17#.

In Sec. II we present the particular model that we stu
and perform a preliminary analysis of its behavior. In Sec.
a single-transverse-mode approximation is introduced
we use it to predict the existence of boundary-induced spa
chaos. Numerical simulations are presented in Sec. IV
substantiate our claims beyond the validity of the previo
approximation. Finally, we summarize the results and o
problems in the Conclusions.

II. A REACTION-DIFFUSION EQUATION
IN A STRIP-SHAPED DOMAIN

As stated before, the application of the theory of dynam
cal systems to the study of stationary spatial configurati
of one-dimensionally extended systems is direct. A stati
ary pattern satisfies, in general, a system of ordinary dif
ential equations with the spatial coordinate as its indepen
variable which we can think of as a time. Parity symmetry
a spatial coordinate will appear as the time-reversal sym
try after reinterpretation of this coordinate as time.

The general study of spatial chaos in several spatial
mensions requires the notion of translational dynamical s
tems with d times @7,22#. There are situations, howeve
where such formalism is not necessary because the two
dependent spatial directions are distinguished by the ge
etry of the system, so that one of them naturally plays
role of time. In this way, the spatial variation in one directi
would be interpreted as time evolution of a one-dimensio
field that only depends on the remaining spatial coordin
Particularly suited to our approach will be the case of tw
dimensional extended systems in strip-shaped regions m
longer ~ideally infinite! in the timelike direction than in the
spacelike one. If the strip is narrow enough, only patte
composed of one or few transverse spatial modes will
allowed and spatial chaos could be readily defined and id
tified in terms of the usual concepts of dynamical syste
theory.

In order to concentrate on spatial chaos purely induced
boundary effects, we consider a very simple model equa
containing only up to second-order derivatives and a sin
field variable, a reaction-diffusion equation of the Fish
Kolmogorov type:

] tc5¹2c1ac2c3, ~2.1!

with appropriate boundary conditions for the real fie
c(x,t). The real linear coefficienta can be absorbed resca
ing the variables, but we find convenient to keep it explicit
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the equation. Equation~2.1! appears in several contexts in
cluding phase transitions, where it takes the name of
Ginzburg-Landau equation or time-dependent Ginzbu
Landau model@23#, and population dynamics@24#. The dy-
namics of Eq.~2.1! can be written as purely relaxational@25#
in a functional Lyapunov potentialV@c#:

] tc52
dV@c#

dc
~2.2!

with

V@c#5E
D

dxS 1

2
u¹cu22

a

2
c21

1

4
c4D1S@c#, ~2.3!

where the integral is over the domainD. The surface term
S@c# takes into account the effects of boundary conditio
over the domain limit, and it vanishes when periodic, n
Dirichlet (c50) or null Neumann (]nc50) boundary con-
ditions are specified. It follows from Eq.~2.2! that V can
only decrease with time. The relaxational character of
~2.2! implies also that the only asymptotic states are fix
points. Therefore, this model does not display any lim
cycle oscillations or more complex dynamics such as tem
ral chaos in any number of spatial dimensions.

Equation ~2.1! has been extensively studied in one a
two dimensions. In one dimension, for infinite systems,
have the following situations: Fora,0, c50 is the only
stationary solution and is stable under time evolution. Aa
50 a pitchfork bifurcation occurs and the former trivial s
lution loses its stability. Fora.0 some of the stationary
solutions are the following:

~1! Homogeneous solutions:c(x,t)50, and c(x,t)5
6Aa[c6 .

~2! Kink type solutions:c(x,t)56Aa tanh(Aa/2x).
~3! Periodic solutions: c(x,t)5Aa2k2 sin(kx)1 . . . ,

where the ellipsis stands for higher-order harmonics.
Only c6 and the kinks are now linearly stable.

For finite systems, the boundary conditions normally
strict the variety of solutions either by selecting some valu
of k, or by favoring either the kink or thec6 solutions.
Additionally, the boundary conditions may have as an eff
a shift in the pitchfork bifurcation pointa50 to a different
valueacÞ0 and a change in the coefficients appearing in
solutions.

The typical time evolution of initial field distributions
leads to the formation of domains where values ofc close to
eitherc1 or c2 dominate. These domains are separated
kink- or anti-kink-type walls that can move into each oth
producing a mutual annihilation. By this mechanism, sm
domains disappear and feed the larger domains whose
then increase logarithmically in time until one of the statio
ary solutions, prevailing by chance, takes over the wh
system.

In two dimensions, the dynamics typically consists of t
coarsening of domains ofc1 andc2 phases whose typica
size grows as the square root of time@23#. Interfaces between
the two phases are locally similar to the one-dimensio
kink solutions. The gradient term in Eq.~2.3! is important at
the interfaces giving a positive contribution to the Lyapun
potential. Since the dynamics always minimizesV, it tends to
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reduce the length of these interfaces. This reduction
achieved by the shrinking and ulterior collapse of the sm
est domains to contribute to the~square-root! growth of the
remaining ones.

It was shown by Collet@26# in a more general context tha
the time evolution and final states of Eq.~2.1! in finite do-
mains are similar to those in an infinite system except i
boundary layer around the border whose size depends o
a parameter. This result holds in both one and two dim
sions. Thus, in order to observe the influence of bounda
on pattern evolution, we need to consider a domain sm
enough at least in one of the directions. In a stripped dom
elongated in thex direction, this small dimension will be th
transversey direction. The domain will be limited in this
transverse dimension by the boundariesy0(x) and y1(x),
where the functionc(x,y,t) will take valuesc0(x)yc1(x),
respectively~Dirichlet conditions!.

In the one-dimensional case, conventional dynamical s
tems theory implies that there are no chaotic stationary s
tions to Eq.~2.1! because the spatial dynamical system is j
a second-order ordinary differential equation. Howev
chaos can arise if somex-dependent periodic forcing i
added to the equation. These arguments do not apply dire
to the two-dimensional case. However, it is tempting to th
of undulations of the lateral boundaries as a kind of perio
forcing on the longitudinal coordinate. This suggests the p
sibility of finding chaotic structures in thex direction in-
duced by undulated boundaries.

As a particular case we consider domains limited by t
sinusoidal boundaries. With applications to hydrodynam
in mind we think of these domains as channels with si
soidal banks.

y1~x!5
d1

2
@12cos~ax!#, ~2.4!

y0~x!5212
d0

2
@11cos~ax1f!#. ~2.5!

Hered1 , d0 are the amplitude of the undulation of ea
bank,a is the spatial frequency which we assume to be
same for both banks andf is their mutual phase mismatch
Figure 1 shows a few typical shapes for our channel-l
domains. The cased15d0 andf5p gives a sausage-shape
channel with symmetrically and sinusoidally varying widt
On the other hand,d15d0 andf50 sets the boundaries i
phase and corresponds to a domain with the form of a s
soidally meandering channel of constanty width.

FIG. 1. Examples of stripped channels enclosed in oscilla
walls: a52p/l; d05d1, and~a! f5p, ~b! f50.
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We stress that we want to consider the simplest situa
that may display spatial chaos. Consideration of more co
plex equations exhibiting spatial chaos even with sim
boundaries, or more complex boundaries such as incomm
surate oscillations for the upper and lower banks~corre-
sponding to quasiperiodic forcing! would only enrich the
complexity of stationary solutions.

A complete definition of the model requires also t
specification of boundary conditions on the longitudinalx
direction. The analogy with a temporal variable would
better for domains infinite in thex direction, with only the
weak requirement of boundedness forc. However, an infi-
nite domain is inadequate for the numerical approaches t
described below. In our calculations we would need to i
pose periodic boundary conditions~of periodL) along thex
direction. In this way we are restricting the class of solutio
to periodic orbits of periodL or less in the time-like coordi-
nate. We will still be able to identify as spatially chaotic th
configurations that have the maximal periodL, provided this
period increases and the periodic orbit approaches a cha
trajectory as system sizeL increases. Subtle consideration
such as Lyapunov number computations for such limit
orbits will be addressed elsewhere.

To perform numerical simulations we can choose betw
several strategies. If we are only interested in station
states, we can numerically solve the time-independent
sion of Eq.~2.1! by means of finite elements or finite differ
ences. These methods can be implemented to find solut
that may or may not be stable under time evolution. Anot
possibility is to follow the dynamics of the full Eq.~2.1! until
a stationary state is reached. In this way, only attracting~i.e.,
stable! stationary solutions can be found~remind that only
stationary attractors are allowed by this purely relaxatio
dynamics!. In any case, a convenient way to handle t
boundary conditions is to map the region limited byy0(x)
and y1(x) ~and byx50,L) to a rectangular one:ỹ151, ỹ0
50, andx50,L. For arbitrary functionsy0(x) and y1(x),
the map (x,y)°(x,ỹ), with

ỹ5~y2y0!/~y12y0!, ~2.6!

transforms Eq. ~2.1! into an equation for c̃(x,ỹ,t)
[c(x,y,t):

] tc̃5]xx
2 c̃1F~x!] ỹỹ

2
c̃1G~x!]xỹ

2
c̃1H~x!] ỹc̃1ac̃2c̃3,

~2.7!

where

F~x!5
11~Dxỹ1y0x!

2

D2
, ~2.8!

G~x!522
Dxỹ1y0x

D
, ~2.9!

H~x!5
ỹ~2Dx

22DDxx!2Dy0xx12Dxy0x

D2
, ~2.10!

D~x!5y1~x!2y0~x!, ~2.11!

g
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Dx~x!5
d

dx
D~x!, ~2.12!

Dxx~x!5
d2

dx2
D~x!, ~2.13!

y0,1x5
d

dx
y0,1. ~2.14!

HereD(x) is the transverse distance between the bounda
and gives the width of the strip. If this width does not va
alongx, thenDx(x)505Dxx(x).

The new transverse boundary conditions are

c̃~x,ỹ50!5c0~x!, c̃~x,ỹ51!5c1~x!. ~2.15!

A first observation is that the shape of the domain bou
aries is reflected as a parametric forcing of the equation
the new coordinates. For example, for the simplest case
meandering channel given by Eqs.~2.4! and ~2.5! with f
50, andd05d15d @Fig. 1~b!#:

] tc̃5]xx
2 c̃1F~x!] ỹỹ

2
c̃1G~x!]xỹ

2
c̃1H~x!] ỹc̃1ac̃2c̃3,

~2.16!

F~x!5

11S da sin~ax!

2 D 2

~11d!2
, ~2.17!

G~x!52
da sin~ax!

11d
, ~2.18!

H~x!52
da2cos~ax!

2~11d!
. ~2.19!

Setting the right-hand side of Eq.~2.7! to zero in order to
seek for stationary solutions, and thinking ofx as the time,
we can view Eq.~2.7! as a nonlinear evolution equation for
one-dimensional field with a ‘‘time’’-periodic parametri
driving due to the boundaries. Present knowledge on s
tiotemporal chaos and pattern formation can, in principle,
applied to analyze the behavior of this resulting evolut
equation. General results are not abundant, however. In
III further approximations will be introduced in order to fa
cilitate the analysis and establish the existence of station
spatially chaotic solutions.

III. SINGLE-TRANSVERSE-MODE APPROXIMATION

For definiteness, in the rest of the paper we will consi
just null Dirichlet boundary conditions, that is the fieldc
takes the value zero at the transverse boundaries:c0(x)
5c1(x)50. In this case our model in the form of Eq.~2.7!
has the trivial solutionc̃(x,ỹ,t)50. The stability analysis of
this solution for the case of a rectangular domain of widtl
leads to an eigenvalue problem for the linearized equat
For a.ac5(p/ l )2 the eigenfunctions factorize into longitu
dinal @exp(ikxx)# and transverse @sin(kỹỹ)# modes:
c̃l,k(x,ỹ,t)5exp(lt)exp(ikxx)sin(kỹỹ), with kỹ5(p/ l )m,m
es
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51,2, . . . , kx real, l satisfying the dispersion relationl
5a2k2, and k25kx

21kỹ
2 . The unstable modes are the

those satisfying the conditionk2,a. The first unstable mode
corresponds to (kx ,kỹ)5(0,p/ l ), which becomes unstable a
the critical valueac5(p/ l )2. The transverse modes are di
cretized in multiples ofp/ l due to the boundary condition. I
in addition, we requireL periodicity in the longitudinal co-
ordinatex, kx will be also discrete, but provided thatL@ l
this discretization will be much finer than the transverse o
The value of the parametera controls how many modes ar
linearly unstable. If the transverse sizel is small enough for
the control parameter to satisfy the condition (p/ l )2,a
,(2p/ l )2, there would be just one linearly unstable tran
verse mode, with many associated longitudinal unsta
modes. Close enough to the instability threshold, we can
an approximate solution of the form c̃(x,ỹ,t)
5A(x,t)sin(pỹ) and write an evolution equation for the am
plitude A(x,t) of the first transverse mode.

We are interested, however, in a domain which is no
rectangular strip but an undulated channel. The coordin
change bringing our domain into a rectangular one rend
the variables nonseparable and the linear problem is
longer solvable analytically. However, for small deviatio
from the uniform channel a perturbation scheme can be u
In the same vein as in the preceding paragraph we try,
our undulated domain, the ansatzc̃(x,ỹ,t)5A(x,t)sin(pỹ)
1O(d0 ,d1), assuming thata is close to the threshold im
posed by the smalll, and that the size of the channel und
lations is small. We call this approach a single-transver
mode approximation~STMA!.

Projecting Eq. ~2.7! onto the single-transverse mod
present in the ansatz and neglecting higher-order contr
tions we get the following evolution equation for the amp
tudeA:

] tA5]xx
2 A1b~x!]xA1v2~x!A2

3

4
A3, ~3.1!

where

b~x!5
Dx

D
~3.2!

and

v2~x!5a1
DDxx22Dx

2

2D2
2S p

D D 2

~11y1xyox!

2~2p223!
b2

6
. ~3.3!

We have checked that a more rigorous, but lengthy,
proach based on a multiple scale expansion leads to the s
result @27#. The stationary patterns satisfy the tim
independent version of Eq.~3.1!. In terms of the coordinatex
considered as a time, one can view this spatial dynam
system as a parametrically forced nonlinear oscillator:
main undulations provide a periodic driving on the frequen
of the systemv2(x). In turn, b(x) is a ‘‘dissipation’’ term
which can be positive or negative depending onx. This x
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modulation ofb comes from the longitudinal variation of th
vertical width. The integral of the ‘‘dissipation’’b(x) on one
period of the oscillating boundariesT52p/a is
*x0

x01Tb(x)dx5 ln@D(x0)#/@D(x01T)#50. This shows that al-

though system~3.1! is locally dissipative, it is effectively
conservative over one period of the modulation. This i
plies, in particular, that the stroboscopic map associated
the system~3.1! is area preserving.

In the general case, Eq.~3.1! can be simplified by remov
ing the dissipation term with the change:A(x,t)
5exp@21

2*b(x)dx#r(x,t)5r(x,t)/AD(x). The new equation
reads

] tr5]xx
2 r1V2~x!r2

3

4D
r3, ~3.4!

V25a2S p

D D 2

~11y1xyox!2
p213

12
b2. ~3.5!

A particular case occurs when the transverse distance
tween the two channel borders does not vary along the
gitudinal direction, so that the dissipation term vanish
identically, i.e., b(x)50. For the sinusoidal channel th
happens whenf50 andd05d15d @Fig. 1~b!#. In this case,
the amplitude equation is reduced to

] tA5]xx
2 A1v2~x!A2

3

4
A3 ~3.6!

with

v25a2S p

11dD 2

2
~pda!2

4~11d!2
sin2~ax!. ~3.7!

When ] tA50, Eq. ~3.6! is a dissipative Mathieu equatio
modified by the addition of a cubic nonlinear term o
equivalently, a parametrically forced Duffing oscillator. Th
equation is known to have chaotic solutions@28#.

The general time-independent case of Eq.~3.1! @or Eq.
~3.4!# reads

]xxA52v2~x!A1
3

4
A32b~x!]xA. ~3.8!

In the absence of undulations (d05d150) parametric forc-
ing and dissipation vanish and the equation is both Ham
tonian and integrable. It has a region in phase space (A,Ax)
close to the origin where motion is bounded and regu
Beyond the separatrices of the two saddle points (A,Ax)
562/A3(a2p2,0), trajectories escape to infinity. Whe
undulations are introduced, separatrices of the saddle po
deform and may cross. It is well known that for perturb
Hamiltonian systems, separatrix intersections indicate
onset of chaos. In our system, in addition to chaotic boun
trajectories, separatrix intersections lead also to fractaliza
of the phase-space boundary dividing bounded and
bounded trajectories. Melnikov theory provides us with t
tools to determine analytically the necessary conditions
separatrix intersection and the occurrence of chaos. Foll
-
th

e-
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e
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e
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ing @28#, the Melnikov functionM (u) can be calculated for
small d. For example, in the casef5p, d05d15d one
finds

M ~u!5 f ~a,a!sin~au!. ~3.9!

The fact that the functionM (u) has zeros as a function ofu
indicates that separatrix intersection and chaotic behavior
cur. Chaotic behavior appears for arbitrarily small sizes
the channel undulations. We expect similar behavior to oc
for other values off, d0, andd1.

To illustrate the chaotic behavior of the stationary STM
~3.8! we show in Fig. 2~a! its numerical stroboscopic map
The dots are values of (A,Ax) at multiples of the forcing
period T52p/a for a set of initial conditions. Several re
gions dominated by chaotic trajectories and separated
KAM tori ~the closed curves corresponding to quasiperio
solutions! are clearly recognized in the picture. Also, th
approximate location of the fractal boundary separat
bounded trajectories from those escaping to infinity
pointed out by an arrow. Melnikov analysis also implies t
existence of a dense set of unstable periodic orbits in
vicinity of the separatrix intersection on both sides of t
fractal boundary mentioned before. These periodic orbits
the fact that they constitute a skeleton of the chaotic tra
tories, are important for our analysis because the perio
boundary conditions in thex-direction select them out from
the uncountable many other possible solutions of Eq.~3.8!.

FIG. 2. ~a! Stroboscopic Poincare´ map of the phase space of th
system ~3.8! for the valuesd05d151, a52p, a517, f5p.
KAM tori and chaotic trajectories in between are clearly seen. T
arrow indicates the approximate location of the fractal bound
separating bounded and unbounded trajectories.~b! The chaotic
configuration corresponding to the cloud of points surrounding
origin in the stroboscopic map.
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IV. NUMERICAL STMA AND TWO-DIMENSIONAL TIME
INTEGRATIONS

In the previous section, we have shown both analytica
and numerically that simple undulated boundaries may
duce spatially chaotic steady solutions in our simple mo
~3.1!. In this section, we discuss the accuracy and range
validity of the STMA and the physical relevance of its sol
tions by comparing with the numerical integration of the f
model ~2.1!.

In the first place, we discuss the results of such integra
for the particular casef5p and d05d15d. Starting from
random initial conditions the system, after a time lo
enough, settles in a disordered stationary configuration
shown in Fig. 3. There we present the stationary configu
tion A(x)[A(x,t→`) obtained by direct integration of Eq
~3.1!. In the same plot, a longitudinal cross section of t
asymptotic field obtained from a simulation with the fu
two-dimensional model is shown for comparison. We use
the initial condition of the two-dimensional problem the s
lution from the STMA for the same parameter values,c

5A(x)sin(pỹ), to provide an approximate stationary sol
tion to Eq.~2.1!. After a short time of adjustment, the syste
settles in a stationary state that is very close to the in
approximation. The full two-dimensional field and its reco
struction from the STMA are also shown in Figs. 3~b! and
3~c!, respectively. This figure reveals a strikingly accurate

FIG. 3. Stationary solution of the STMA~3.1! compared to a
fully two-dimensional simulation of Eq.~2.1! for the parameter val-
ues d05d150.1, a5p, a510, f5p. ~a! Stationary solution
A(x) of the STMA ~dotted! and the on-axis values of the actu
two-dimensional stationary solutionc(x,y50) ~solid!. ~b! The full
two-dimensional solution of Eq.~2.1! represented on a gray-scal
White corresponds to the highest values ofc and black to the
lowest. ~c! Reconstruction of the two-dimensional field from th

STMA @c(x,y)5A(x)sin(pỹ)# on the same gray-scale as in~b!.
y
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of

n

as
-

s

l
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t

of the STMA solution and the complete field simulation,
strong indication of the validity of the approximation as
tool for analysis. The maximum absolute error of the a
proximate solution is of the same order of magnitude in b
the undulated channel and a rectangular-domain test c
This suggests that the error is mainly due to the truncatio
the first linear transverse mode, but not to the peculiarities
the curved boundaries.

The accuracy of the STMA,A(x,t)sin(pỹ), breaks down
when the channel width increases or when strongly nonr
angular domains are considered. Nevertheless, we have
performed direct simulations of Eq.~2.1! for this last case.
An example of the typical behavior is shown Fig. 4 f
boundaries defined byd05d151.0, a5p, a520, f5p.
Notice that the resulting stationary configuration displays
same qualitative features of the STMA solutions: disorde
distribution of kinks randomly pinned at some of the narro
of the channel. This is evidence of the fact that undulat
boundaries may also be the source of stationary spatial c
in a two-dimensional system~2.1! beyond the regime wel
described by a single transversal mode.

The results in Figs. 3 and 4 illustrate the physical mec
nism behind the emergence of spatial chaos in our syst
Let us remember that Eq.~2.1! evolves to minimize the po-
tential ~2.3!. This minimization requires one to reduce
much as possible the length of the interfaces betweenc1 and
c2 . Following this tendency, an interface that links the o
posite lateral banks of the channel and is far from any ot
interface will evolve to lock into one of the narrows of th
channel, where it is shorter than in any other position. D
taching the interface from the bank of the channel wo
imply a temporary increase of the potentialV due to the

FIG. 4. The two-dimensional steady state obtained by simu
tion of the system~2.1! starting from random initial conditions. The
amplitude of the field on the channel axis is shown in the low
panel. The parameter values ared51.0, a5p, a520, f5p.
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FIG. 5. One-dimensional solu
tion of the system~3.1! showing a
steady chaotic configuration, it
spatial power spectrum, the trajec
tory in the projected phase spac
(A,Ax), and the time evolution of
the Lyapunov functional, showing
that this is an attracting configura
tion. Parameter values as in Fig. 3
but for a longer system.
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necesary proliferation of new interfaces. Such a potential
crease is not allowed by the dynamics. Hence, the rand
occupation~arising from random initial conditions! of the
narrows of the channel by kinks and antikinks finally buil
up a spatially chaotic stationary configuration. This arg
ment, based on kink and interface dynamics, clearly app
beyond the range of validity of the STMA, where we ha
analytically established the existence of spatial chaos, as
denced in Fig. 4. With this mechanism in mind, we can a
conclude that not all the chaotic trajectories presented in
2 will lead to spatial chaos stable in time: only those cor
sponding to an energetically favorable~a local minima of the
potentialV) distribution of kinks will be reached under tim
evolution. In particular, the trajectory plotted in Fig. 2~b!
corresponds to a temporally unstable configuration.

Let us now try to get further insight about the chao
nature of the irregular spatial structures described above.
riodic boundary conditions in the longitudinal direction a
ways force the system to converge not to a chaotic spa
configuration, but to a periodic one which we have sho
may very well be of the maximal period. To justify the use
the chaotic qualifier we need to show that as the size of
system increases, these periodic configurations approach
that could be characterized as chaotic in some way.
course, to numerically carry out this process we would n
to consider very long channels. Unfortunately though, p
forming direct simulations on the fully two-dimension
model soon becomes computationally prohibitive as
number of the channel undulations increases. However,
ing demonstrated that the STMA accurately describes
qualitative features of the full model, we can concentrate
attention on the behavior of the approximate model Eq.~3.1!.

In Fig. 5 we summarize the results from the numeri
integration of Eq.~3.1! using the same parameter values as
Fig. 3 with the exception of the domain size which now
much larger. An asymptotically stable configuration
shown in~a!, while ~c! displays the projection of the trajec
tory in phase space (A,Ax). The power spectrum ofA(x)
plotted in Fig. 5~b! shows the typical broadband feature ch
acteristic of chaotic trajectories. As a further indication of t
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~approximately! chaotic nature of this configuration, we hav
shown in Fig. 6 the stroboscopic map constructed from
trajectory in Fig. 5, taking phase-space points at times in
ger multiples ofT. This map reveals an incipient self-simila
fractal structure, also common in chaotic trajectories.
these facts together give compelling evidence that the tra
tory, althoughL periodic by construction, develops chaot
features as the system size increases.

Finally, as an illustrative measure of the asymptotic s
bility of this solution, Fig. 5~d! displays the value of the
Lyapunov potentialV@c# evaluated along the time evolutio
of the field c̃(x,ỹ,t)5A(x,t)sin(pỹ). The functional de-
creases in time, confirming the consistency of the STM
with the exact dynamics of Eq.~2.2!, and the potential as
ymptotically approaches a constant value indicating that
field has reached a local minimum ofV.

V. CONCLUSIONS

We have given evidence of the existence of stationa
stable, longitudinally chaotic spatial configurations induc
by undulated boundaries in a simple two-dimensio
reaction-diffusion model that does not otherwise display a
kind of chaos. We have demonstrated that these type
boundaries can be convincingly mapped into spatially p
odic parametric modulations in a one-dimensional appro
mation to the original system. In a dynamical-systems
proach to the study of stationary solutions, these modulati
play the role of a temporal time-periodic forcing capable
drive a nonlinear second-order ODE~ordinary differential
equation! into chaotic behavior. The diffusive character
our original model ensures precisely that the relevant ODE
in fact, second order and that the presence of chaotic sta
ary solutions is expected at this level of approximation. P
vious results exist@6,20,21# showing that spatial periodic
modulation of some parameters intrinsic to the dynam
may originate spatial chaos in relatively simple reaction d
fusion models. However, to our knowledge, the present is
first example in which a straightforward dynamical syste
approach is used to establish the existence of disorde
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FIG. 6. Stroboscopic map o
the trajectory shown in Fig. 5
Two succesive amplifications ar
shown, displaying a self-similar
structure typical of a fractal.
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two-dimensional systems due to the influence of the bou
aries.

The consequence of our analysis is that chaotic confi
rations shouldexist in virtually any of the experimental sys
tems commonly used to study pattern formation, provid
that boundary conditions such as those studied here are
posed. Thestability of these chaotic configurations should
discussed in each particular case. While in our model sta
ity comes from the tendency of the dynamics to minim
Eq. ~2.3!, therefore minimizing interface lengths and leadi
to pinning of these interfaces to the narrows of the chan
the mechanism for stability in other systems may be diff
ent. Apart from the direct application to pattern forming sy
tems, the idea of boundary-generated spatial chaos coul
speculatively transferred to other nonlinear extended
p.

;

d-

u-

d
m-

il-

l,
-
-
be
-

namical systems of interest. For example, it is possible
low Reynolds number fluid flows through a spac
periodically perturbed pipeline, or even through a realis
channel of shape similar to the ones considered here,
display frozen spatial chaos@17#. A numerical search for this
manifestation of ‘‘frozen turbulence’’ at the level of Navie
Stokes equations is currently in progress. We expect
observation to promote also experimental work both in
area of pattern formation and in hydrodynamics.
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