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Frozen spatial chaos induced by boundaries
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We show that rather simple but nontrivial boundary conditions could induce the appearapetialfchaos
(that is stationary, stable, but spatially disordered configurgtionextended dynamical systems with very
simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-
dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode
approximation are used to describe the spatially chaotic struc{i8&863-651X99)01812-7

PACS numbdps): 05.45-a

[. INTRODUCTION configurations depend just on the unique spatial coordinate.

In the past few decades, considerable understanding of thEhese configurations are solutions of sets of ordinary differ-
phenomenon of temporal chaos in dynamical systems of fewntial equations(the spatial dynamical systepm with the
degrees of freedom has been achie{ed3]. On the other space variable as the independent variable. The standard
hand, spatiotemporal chaos in extended dynamical systentkeory of low-dimensional dynamical systems can be used to
with infinitely many degrees of freedom is currently underdescribe such configurations, by just considering the spatial
very active investigatiofd,5]. It is remarkable however, that coordinate as a fictitious time. Rigidly traveling waves with
an area of problems laying somehow between the two exspatial chaotic structure can also be considered as a case of
tremes has not received so much attention, namely, purelypatial chaos in a moving reference frafe-10Q).
spatial chaos as a stationary attractor of extended dynamical Spatial chaos may appear when gipatial dynamical sys-
systemg6-11. o tem has a sufficiently high dimensional phase space. This

The possible existence of this kind of attractors was SU9nigh dimensionality may arise from eithé) the presence of
gested by Ruell¢12] in the context of equilibrium phases. pigh order spatial derivatives in a single evolution equation

He poin'ted out the_parallelism between a time-dependeni<’in the cases of the Swift-Hohenberg equafi® 2, and
differentiable dynamical system and the space dependence Riramoto-Sivashinsky and related modégs11], (b) the
equilibrium states in statistical mechanics. He then raised thgoupling of several fields each one satisfying él lower order

guestion as to whether the existence of turbulent crystals. . . ; . :
could be the natural next step towards complexity after spaalﬁcerentlal equation as in excitable medi#0] and in (the

tially homogeneous, periodic, and quasiperiodic equilibriumreal a_nd Imaginary parts pthe Complex szburg-Landau
phases have been found. Newell and Ponjé8ligave some equgt!on[8] which supports chaotlc traveling waves, (oJ
conditions under which such a turbulent crystal would exis€XPlicit space-dependent forcing terms agéhor [21].
in pattern-forming systems described by a free energy. The- Consideration of two—dlmensmr}al spatial chaps hgs been
oretical and experimental work on modulated phases an¥ery scarce. In the absence of a simple connection with con-
commensurate-incommensurate transitifi®, 15 represent  ventional dynamical systems theory, the very concept of
additional concrete results along these lines. chaos in the spatial configuration should be properly defined
In the context of fluid dynamics, the existence of spatiallyfor the general two-dimensional case. A rather complete for-
chaotic, but temporally steady solutions would also fill amalism generalizing dynamical system to¢tropies, di-
conceptual gap between two well-studied complex phenommensions...) to multidimensional spatial chaos has been
ena: Lagrangian chaos, and Eulerian chaos or turbulencdeveloped7,22], and some examples examingd20]. On
The former refers to the chaotic motion of a fluid parcelthe other hand, as the number of dimensions increases, a
which might occur even in laminar and, in three dimensionsmuch larger variety of nontrivial boundary condition classes
steady flowgd16—-18. On the other extreme, the road to tur- surely leads to a greater richness in the expected properties
bulence is usually associated with a hierarchy of instabilitiesf the steady field configurations. A well-posed question is
leading to increasingly spatiotemporally chaotic Eulerian vethen whether relatively simple boundary conditions may lead
locity fields. Frozen spatial chaos would then refer in thisto steady spatially chaotic configurations. The main purpose
context to a third possibility: a stationary flow spatially cha- of this paper is to address this question.
otic in the Euler description. In addition to the existence of chaotic spatial configura-
By now, many extended dynamical systems displayingions, it is important also to study their stability in time. A
spatial chaos have been identified. Most of the studies arstationary state will only be physically observable if it is
concerned with one dimensionally extended systems. Thestable or at least long-lived. It turns out that the temporal
are especially suitable to analysis because their steady-stageability of the stationary solutions is in general unrelated to
the stability of these configurations considered as orbits of
the spatial dynamical system. In the examples cited above,
*Electronic address: victor@imedea.uib.es there are cases of both stable and unstable space-chaotic con-
TURL: http://www.imedea.uib.es/Nonlinear figurations, but instability seems to be more frequent. As a
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consequence, spatial chaos has been generally consideredtioé equation. Equatio(2.1) appears in several contexts in-
limited physical relevance. cluding phase transitions, where it takes the name of real

In this paper we show that rather simple undulated stripGinzburg-Landau equation or time-dependent Ginzburg-
like domain shapes can induce, in a very simple nonlineatandau mode[23], and population dynamid®4]. The dy-
extended dynamical system, the formation of patterns thatamics of Eq(2.1) can be written as purely relaxatiof@b]
are bothspatially chaoticand temporally attracting The in a functional Lyapunov potentif[ ¢/]:
kind of modulated boundariese use could be easily imple-
mented in standard experimental pattern-formation setup’s P oV[y]
such as Faraday waves, convection cells, or open flows. In W= Sy
fact, our work was originally motivated by the observation,
in a fluid dynamics experimental setup consisting of a periwith
odic array of pipe bends, that the transverse profile of the 1 1
steady flow does not necessarily repeat itself with the same _ < 2 & 5 1o
periodicity of the array17]. Vivl= JDdX(Z Vi 2 vt 4 v TSyl (23

In Sec. Il we present the particular model that we study
and perform a preliminary analysis of its behavior. In Sec. lllwhere the integral is over the domaih The surface term
a single-transverse-mode approximation is introduced an@] ¢] takes into account the effects of boundary conditions
we use it to predict the existence of boundary-induced spatialver the domain limit, and it vanishes when periodic, null
chaos. Numerical simulations are presented in Sec. IV td®irichlet (¢=0) or null Neumann 4,,»=0) boundary con-
substantiate our claims beyond the validity of the previouditions are specified. It follows from Ed2.2) that V can
approximation. Finally, we summarize the results and operonly decrease with time. The relaxational character of Eq.

(2.2

problems in the Conclusions. (2.2) implies also that the only asymptotic states are fixed
points. Therefore, this model does not display any limit-
Il. A REACTION-DIFFUSION EQUATION cycle oscillations or more complex dynamics such as tempo-
IN A STRIP-SHAPED DOMAIN ral chaos in any number of spatial dimensions.

o _ Equation(2.1) has been extensively studied in one and
As stated before, the application of the theory of dynamiyq dimensions. In one dimension, for infinite systems, we
cal systems to the study of stationary spatial configurationgaye the following situations: Fa<0, #=0 is the only
of one-dimensionally extended systems is direct. A stationgatignary solution and is stable under time evolutionaAt
ary pattern satisfies, in general, a system of ordinary differ— g 4 pirchfork bifurcation occurs and the former trivial so-
ential equations with the spatial coordinate as its independefitiion |oses its stability. Fom>0 some of the stationary
variable which we can think of as a time. Parity symmetry ingg| tions are the following:

a spatial coordinate will appear as the time-reversal symme- (1) Homogeneous solutions#(x,t)=0, and ¥(x,t)=
try after reinterpretation of this coordinate as time. + Ja=y ’ ’ ’

The general study of spatial chaos in several spatial di- (2) Kink type solutionsz(x,t) = + a tanh(/a/2x).

mensions requires the notion of translational dynamical sys- T LT R e
tems with d times [7,22]. There are situations, however, (3) Peno@c. solutions: w()f't)_ a—k sm(kx){r T
vhere the ellipsis stands for higher-order harmonics.

where such formalism is not necessary because the two i ; X

dependent spatial directions are distinguished by the geo nly "bi. :_;md the kinks are now linearly st.a}ble.

etry of the system, so that one of them naturally plays the .For finite systems, th.e bou.ndary cond|t|qns normally re-

role of time. In this way, the spatial variation in one direction strict the variety O_f SOIU_“()”S elthe_r by selecting some values
Pf k, or by favoring either the kink or the/. solutions.

would be interpreted as time evolution of a one-dimensional dditionaliv. the bound giti h fect
field that only depends on the remaining spatial coordinate'.o‘ lionally, the bounadary conditions may have as an efiec

Particularly suited to our approach will be the case of two-2 Thiﬂ in the p(;tchf(r)]rk bifqrcar:ion pc;;@:o to a different h
dimensional extended systems in strip-shaped regions muéﬁ‘lu?acqﬁo and a change in the coefficients appearing in the
longer (ideally infinite) in the timelike direction than in the SClUtions.

spacelike one. If the strip is narrow enough, only pattern The typical timg evolution .of initial field distributions
composed of one or few transverse spatial modes will be€2ds to the formation of domains where valueg/aflose to

allowed and spatial chaos could be readily defined and iderf!ther ¥+ or ¢ dominate. These domains are separated by
tified in terms of the usual concepts of dynamical system&ink- or anti-kink-type walls that can move into each other
theory. produpmg a mutual annihilation. By this mechamsm, smgll
In order to concentrate on spatial chaos purely induced bg_‘ome}ms disappear and feed the larger domains whose sizes
boundary effects, we consider a very simple model equatioH€" increase Ioganth.mmally in time until one of the station-
containing only up to second-order derivatives and a singl@”y selutions, prevailing by chance, takes over the whole

field variable, a reaction-diffusion equation of the Fisher-SYStem- _ _ . .
Kolmogorov type: In two dimensions, the dynamics typically consists of the

coarsening of domains af, and_ phases whose typical
dp=V2y+ay— iy, (2.1)  size grows as the square root of tifid3]. Interfaces between

the two phases are locally similar to the one-dimensional
with appropriate boundary conditions for the real fieldkink solutions. The gradient term in E(.3) is important at
¥(x,t). The real linear coefficierd can be absorbed rescal- the interfaces giving a positive contribution to the Lyapunov
ing the variables, but we find convenient to keep it explicit inpotential. Since the dynamics always minimix&st tends to
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@ (b) We stress that we want to consider the simplest situation
that may display spatial chaos. Consideration of more com-
d plex equations exhibiting spatial chaos even with simple
boundaries, or more complex boundaries such as incommen-
surate oscillations for the upper and lower bariksrre-
W do W complexity of stationary solutions.
A complete definition of the model requires also the
) A i specification of boundary conditions on the longitudinal
direction. The analogy with a temporal variable would be
walls: a=2m/\; do=d;, and(@ ¢=, (b) $=0. weak requirement of boundedness far However, an infi-
) ) __nite domain is inadequate for the numerical approaches to be
reduce the length of these interfaces. This reduction igjescribed below. In our calculations we would need to im-
achieved by the shrinking and ulterior collapse of the small-pose periodic boundary conditiotsf periodL) along thex
remaining ones. ) to periodic orbits of period. or less in the time-like coordi-

It was shown by Collef26] in a more general context that pate. \We will still be able to identify as spatially chaotic the
the time evolution and final states of E@.1) in finite do-  configurations that have the maximal periodprovided this
mains are similar to those in an infinite system except in &eriod increases and the periodic orbit approaches a chaotic
sions. Thus, in order to observe the influence of boundariegypits will be addressed elsewhere.
on pattern evolution, we need to consider a domain small Tq perform numerical simulations we can choose between
enough at least in one of the directions. In a stripped domairseyeral strategies. If we are only interested in stationary
transversey direction. The domain will be limited in this  sjon of Eq.(2.1) by means of finite elements or finite differ-
transverse dimension by the boundariggx) andyi(X),  ences. These methods can be implemented to find solutions
where the functionj(x,y,t) will take valuesyo(X)y#1(X),  that may or may not be stable under time evolution. Another
respectively(Dirichlet conditions. possibility is to follow the dynamics of the full E¢2.1) until
tems theory implies that there are no chaotic stationary solustaplg stationary solutions can be fouritemind that only
tions to Eq.(2.1) because the spatial dynamical system is juskstationary attractors are allowed by this purely relaxational
a second-order ordinary differential equation. However,dynamic$_ In any case, a convenient way to handle the
chaos can arise if somg-dependent periodic forcing is boundary conditions is to map the region limited yy(x)
to the two-dimensional case. However, it is tempting to think_ _ . :
of undulations of the lateral boundaries as a kind of periodic 0, andx=0.L. Ff)r arpltrary functionsyo(x) andy,(x),
forcing on the longitudinal coordinate. This suggests the post’® Map &y)—(x,y), with
duced by undulated boundaries. y=(y—=Yo)/(y1~Yo), (2.9

As a particular case we consider domains limited by two . ) -~ ~
sinusoidal boundaries. With applications to hydrodynamicdransforms Eq. (2.1) into an equation for ¢(x,y,t)
in mind we think of these domains as channels with sinu=#(X.y.t):

sponding to quasiperiodic forcipgvould only enrich the
FIG. 1. Examples of stripped channels enclosed in oscillatinghetter for domains infinite in th& direction, with only the
est domains to contribute to thisquare-rootgrowth of the  gjrection. In this way we are restricting the class of solutions
boundary layer around the border whose size depends on thgyjectory as system size increases. Subtle considerations
elongated in thec direction, this small dimension will be the states, we can numerically solve the time-independent ver-
In the one-dimensional case, conventional dynamical sysy stationary state is reached. In this way, only attradieg,
added to the equation. These arguments do not apply directynd v1(x) (and byx=0,L) to a rectangular ong,=1, ¥,
sibility of finding chaotic structures in thg direction in-
soidal banks.

O= T+ FO) I G(X) I i+ HOX) g+ agi— g7,

d, (2.7
yi(x) = [1-cogax)], (2.4
where
d ~
yo(x)=—1—?0[l+cos(ax+¢)]. (2.5 A= 1+ (A +Yo0)? 28
A2 ’ '
Hered,, d, are the amplitude of the undulation of each _

bank, « is the spatial frequency which we assume to be the ALY+ Yoy
same for both banks andl is their mutual phase mismatch. G(x)=-2 A ' (2.9
Figure 1 shows a few typical shapes for our channel-like
domains. The cas#; =d, and ¢ = 7 gives a sausage-shaped ~ 2 _
channel with symmetrically and sinusoidally varying width. H(X)= YA Ad) ~ AYouct ZAXyOX, (2.10
On the other handj;=dy and ¢=0 sets the boundaries in A?

phase and corresponds to a domain with the form of a sinu-
soidally meandering channel of constgniidth. A(X)=Yy1(X) —Yyo(X), (2.11)
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=1,2,...,k, real, \ satisfying the dispersion relation
Ax(X) = G A, (212 —a-Kk2, and K2=KZ+ k;. The unstable modes are then
those satisfying the conditick?<a. The first unstable mode
g2 corresponds toky ,ky) = (0,7r/1), which becomes unstable at
Ax(X) = — A(x), (2.13  the critical valuea,=(w/1)2. The transverse modes are dis-
dx cretized in multiples ofr/I due to the boundary condition. If
in addition, we requirel periodicity in the longitudinal co-
ordinatex, k, will be also discrete, but provided that>|
this discretization will be much finer than the transverse one.
. ) _ The value of the parametercontrols how many modes are
HereA(x) is the transverse distance between the boundarigfearly unstable. If the transverse sizis small enough for
and gives the width of the strip. If this width does not vary ine control parameter to satisfy the conditiom/[)2<a
alongx, thenA,(x)=0=A,(x). . <(27/1)?, there would be just one linearly unstable trans-
The new transverse boundary conditions are verse mode, with many associated longitudinal unstable
modes. Close enough to the instability threshold, we can try

Y y=0)=¢o(x), Pxy=1)=¢a(x). (2.19 an approximate soluton of the formy(x,y,t)

A first observation is that the shape of the domain bound=A(X,t)sin(mry) and write an evolution equation for the am-
aries is reflected as a parametric forcing of the equation iplitude A(x,t) of the first transverse mode.
the new coordinates. For example, for the simplest case of a We are interested, however, in a domain which is not a
meandering channel given by Eq®.4) and (2.5 with ¢  rectangular strip but an undulated channel. The coordinate
=0, anddy,=d,=d [Fig. 1(b)]: change bringing our domain into a rectangular one renders
the variables nonseparable and the linear problem is no
longer solvable analytically. However, for small deviations

d
yO,lx:&yO,l-

(2.14

O =Tt F(X) 250+ G(X) dis i+ H(X) -+ ai— 37,

(2.16  from the uniform channel a perturbation scheme can be used.
In the same vein as in the preceding paragraph we try, for
N da sin(ax)|? our undulated domain, the ansaf£x,y,t)=A(x,t)sin(my)
2 +0(dp,d;), assuming that is close to the threshold im-
F(x)= T+ d)? : (217 posed by the small and that the size of the channel undu-
( ) lations is small. We call this approach a single-transverse-
dasi mode approximatioiSTMA).
- M Projecting Eq.(2.7) onto the single-transverse mode
G(x) : (2.18 ; > ;
1+d present in the ansatz and neglecting higher-order contribu-
tions we get the following evolution equation for the ampli-
H(X) = - W (219

3
_ 92 2 3
Setting the right-hand side of E(R.7) to zero in order to HA= T+ B(X) A+ 0 (X)A= 7 A, 3.7

seek for stationary solutions, and thinkingofs the time,

we can view Eq(2.7) as a nonlinear evolution equation for a where
one-dimensional field with a “time”-periodic parametric
driving due to the boundaries. Present knowledge on spa-
tiotemporal chaos and pattern formation can, in principle, be
applied to analyze the behavior of this resulting evolution
equation. General results are not abundant, however. In Seand
[l further approximations will be introduced in order to fa-

Ay
B(X)= N (3.2

cilitate the analysis and establish the existence of stationary ) AA,—2A2 ([ 1)?2
spatially chaotic solutions. w (X)=at+ —————| =] (1+Y,¥ox)
24 A
IIl. SINGLE-TRANSVERSE-MODE APPROXIMATION 2
—(2m*=3) % 3.3

For definiteness, in the rest of the paper we will consider
just null Dirichlet boundary conditions, that is the fiei
takes the value zero at the transverse boundaiigéx)
=i1(x)=0. In this case our model in the form of E®.7)
has the trivial solutionj(x,y,t)=0. The stability analysis of
this solution for the case of a rectangular domain of width
leads to an eigenvalue problem for the linearized equatio
Fora>a.=(w/1)? the eigenfunctions factorize into longitu-

dinal [exp(kx)] and transverse [sin(kj{/)] modes:
P (XY, 1) =expit)expikx)singsy), with ky=(/l)m,m

We have checked that a more rigorous, but lengthy, ap-
proach based on a multiple scale expansion leads to the same
result [27]. The stationary patterns satisfy the time-
independent version of E¢3.1). In terms of the coordinate
considered as a time, one can view this spatial dynamical
I”‘system as a parametrically forced nonlinear oscillator: do-
main undulations provide a periodic driving on the frequency
of the systemw?(x). In turn, B(x) is a “dissipation” term
which can be positive or negative dependingonrhis x
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modulation of3 comes from the longitudinal variation of the (a)
vertical width. The integral of the “dissipation3(x) on one
period of the oscillating boundariesT=2n/a is

fig”,e(x)dx:In[A(xO)]/[A(xOJr'I')]:O. This shows that al-

though system3.1) is locally dissipative, it is effectively &
conservative over one period of the modulation. This im-
plies, in particular, that the stroboscopic map associated with
the system(3.1) is area preserving.
In the general case, E(.1) can be simplified by remov-
ing the dissipation term with the changeA(x,t)
=exd — 3/ BX)dX]p(x.t)=p(xt)/VA(X). The new equation
reads

(b)

dp=02p+Q2%(X)p (3.9

___ .3
4A P
243 <

2 ™2 m 2
O =a- K (1+ylxyox)_ 12 B (35)

A particular case occurs when the transverse distance be- ‘ ‘ ‘ ,
tween the two channel borders does not vary along the lon- 100 200 300 400 500
gitudinal direction, so that the dissipation term vanishes X
identically, i.e., B(x)=0. For the sinusoidal channel this
happens wheip=0 anddy=d;=d [Fig. 1(b)]. In this case,
the amplitude equation is reduced to

FIG. 2. (a) Stroboscopic Poincamaap of the phase space of the
system(3.8) for the valuesdy=d,=1, a=2w, a=17, ¢=.
KAM tori and chaotic trajectories in between are clearly seen. The
arrow indicates the approximate location of the fractal boundary
8tA=¢~7)2<XA+w2(X)A— §A3 (3.6) sepa_trating bounded anq unbounded trajectomb)s.The chaqtic

4 configuration corresponding to the cloud of points surrounding the
origin in the stroboscopic map.

with
9 der)? ing [28], the Melnikov functionM (8) can be calculated for
wl=a— lj:d (7 ad) Zsinz(ax)' (3.77  small d. For example, in the cas¢=m, dy=d;=d one
4(1+d) finds

When 3.A=0, Eq. (3.6) is a dissipative Mathieu equation
modified by the addition of a cubic nonlinear term or,
equivalently, a parametrically forced Duffing oscillator. This
equation is known to have chaotic solutidi2g].

The general time-independent case of E31) [or Eq.
(3.4)] reads

M(6)=f(a,a)sin(ab). (3.9

The fact that the functioM () has zeros as a function éf
indicates that separatrix intersection and chaotic behavior oc-
cur. Chaotic behavior appears for arbitrarily small sizes of
3 the channel undulations. We expect similar behavior to occur
O A= — w2(X)A+ = A3— B(X)3,A. (3.9  for other values of$, do, andd,. .
4 To illustrate the chaotic behavior of the stationary STMA
(3.8 we show in Fig. 2a) its numerical stroboscopic map.

In the absence of undulationdd=d;=0) parametric forc- The dots are values ofA(A,) at multiples of the forcing
ing and dissipation vanish and the equation is both Hamilperiod T=2#/«a for a set of initial conditions. Several re-
tonian and integrable. It has a region in phase spac8))  gions dominated by chaotic trajectories and separated by
close to the origin where motion is bounded and regularKAM tori (the closed curves corresponding to quasiperiodic
Beyond the separatrices of the two saddle poifisA()  solutions are clearly recognized in the picture. Also, the
=+2/\/3(a—72,0), trajectories escape to infinity. When approximate location of the fractal boundary separating
undulations are introduced, separatrices of the saddle point®unded trajectories from those escaping to infinity is
deform and may cross. It is well known that for perturbedpointed out by an arrow. Melnikov analysis also implies the
Hamiltonian systems, separatrix intersections indicate thexistence of a dense set of unstable periodic orbits in the
onset of chaos. In our system, in addition to chaotic boundedlicinity of the separatrix intersection on both sides of the
trajectories, separatrix intersections lead also to fractalizatiofractal boundary mentioned before. These periodic orbits and
of the phase-space boundary dividing bounded and urthe fact that they constitute a skeleton of the chaotic trajec-
bounded trajectories. Melnikov theory provides us with thetories, are important for our analysis because the periodic
tools to determine analytically the necessary conditions foboundary conditions in the-direction select them out from
separatrix intersection and the occurrence of chaos. Followthe uncountable many other possible solutions of Bd).
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1

0 10 20 30 40
x

FIG. 4. The two-dimensional steady state obtained by simula-
tion of the systent2.1) starting from random initial conditions. The
amplitude of the field on the channel axis is shown in the lowest

FIG. 3. Stationary solution of the STMA3.1) compared to a
fully two-dimensional simulation of Eq2.1) for the parameter val-
ues dy=d;=0.1, a=m, a=10, ¢=m. (a) Stationary solution
A(x) of the STMA (dotted and the on-axis values of the actual Panel- The parameter values afe 1.0, a=m, a=20, ¢=.
two-dimensional stationary solutiof(x,y=0) (solid). (b) The full
two-dimensional solution of Eq2.1) represented on a gray-scale. of the STMA solution and the complete field simulation, a
White corresponds to the highest values ofand black to the strong indication of the validity of the approximation as a
lowest. (c) Reconstruction of the two-dimensional field from the tool for analysis. The maximum absolute error of the ap-

STMA [¢(x,y) =A(x)sin(my)] on the same gray-scale as(in). proximate solution is of the same order of magnitude in both
the undulated channel and a rectangular-domain test case.

IV. NUMERICAL STMA AND TWO-DIMENSIONAL TIME Th|s'sug'gests that the error is mainly due to the trur_mca}t_lon at

INTEGRATIONS the first linear transverse mode, but not to the peculiarities of

the curved boundaries.

In the previous section, we have shown both analytically The accuracy of the STMAA(X,t)sin(wy), breaks down
and numerically that simple undulated boundaries may inwhen the channel width increases or when strongly nonrect-
duce spatially chaotic steady solutions in our simple modehngular domains are considered. Nevertheless, we have also
(3.2). In this section, we discuss the accuracy and range oberformed direct simulations of E¢.1) for this last case.
Val|d|ty of the STMA and the phySical relevance of its solu- An examp|e of the typ|ca| behavior is shown F|g 4 for
tions by comparing with the numerical integration of the full houndaries defined b,=d,;=1.0, a=m, a=20, ¢=r.
model(2.1). _ _ _ Notice that the resulting stationary configuration displays the

In the first place, we discuss the results of such integratiogame qualitative features of the STMA solutions: disordered
for the particular casg=7 andd,=d;=d. Starting from  distribution of kinks randomly pinned at some of the narrows
random initial conditions the system, after a time longof the channel. This is evidence of the fact that undulating
enough, settles in a disordered stationary configuration, asoundaries may also be the source of stationary spatial chaos
shown in Flg 3. There we present the Stationary Conﬁgurai'n a two-dimensional Syster('ﬂ_l) beyond the regime well
tion A(X)EA(X,t—>OO) obtained by direct integration of Eq described by a Sing|e transversal mode.

(3.2). In the same plot, a longitudinal cross section of the  The results in Figs. 3 and 4 illustrate the physical mecha-
asymptotic field obtained from a simulation with the full nism behind the emergence of spatial chaos in our system.
two-dimensional model is shown for comparison. We use ag et us remember that E42.1) evolves to minimize the po-
the initial condition of the two-dimensional problem the so-tential (2.3). This minimization requires one to reduce as
lution from the STMA for the same parameter valugs, much as possible the length of the interfaces betweeand
=A(x)sin(my), to provide an approximate stationary solu- ¢_ . Following this tendency, an interface that links the op-
tion to Eq.(2.1). After a short time of adjustment, the system posite lateral banks of the channel and is far from any other
settles in a stationary state that is very close to the initialnterface will evolve to lock into one of the narrows of the
approximation. The full two-dimensional field and its recon-channel, where it is shorter than in any other position. De-
struction from the STMA are also shown in FiggsbBand taching the interface from the bank of the channel would
3(c), respectively. This figure reveals a strikingly accurate fitimply a temporary increase of the potentdldue to the
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(a) (b)

2 ' ' ' — 10%
10°
1 10°
2 1072
“ 0 k 1074
-1 10”8 FIG. 5. One-dimensional solu-
; 10-8[ ] tion of the systen{3.1) showing a
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necesary proliferation of new interfaces. Such a potential infapproximately chaotic nature of this configuration, we have
crease is not allowed by the dynamics. Hence, the randorshown in Fig. 6 the stroboscopic map constructed from the
occupation(arising from random initial conditionsof the trajectory in Fig. 5, taking phase-space points at times inte-
narrows of the channel by kinks and antikinks finally builds ger multiples ofT. This map reveals an incipient self-similar
up a spatially chaotic stationary configuration. This argu-fractal structure, also common in chaotic trajectories. All
ment, based on kink and interface dynamics, clearly appliethese facts together give compelling evidence that the trajec-
beyond the range of validity of the STMA, where we havetory, althoughL periodic by construction, develops chaotic
analytically established the existence of spatial chaos, as evieatures as the system size increases.

denced in Fig. 4. With this mechanism in mind, we can also Finally, as an illustrative measure of the asymptotic sta-
conclude that not all the chaotic trajectories presented in Figoility of this solution, Fig. %d) displays the value of the

2 will lead to spatial chaos stable in time: only those corre-Lyapunov potentiaV[ ] evaluated along the time evolution

sponding to an energetically favoralgelocal minima of the  of the field (x,y,t) =A(x,t)sin(my). The functional de-
pOtentialV) distribution of kinks will be reached under time creases in time, Confirming the Consistency of the STMA
evolution. In particular, the trajectory plotted in Fig(b?2  with the exact dynamics of Eq2.2), and the potential as-

corresponds to a temporally unstable configuration. ~ ymptotically approaches a constant value indicating that the
Let us now try to get further insight about the chaotic fie|d has reached a local minimum ot

nature of the irregular spatial structures described above. Pe-
riodic boundary conditions in the longitudinal direc.tion aI—. V. CONCLUSIONS
ways force the system to converge not to a chaotic spatial
configuration, but to a periodic one which we have shown We have given evidence of the existence of stationary,
may very well be of the maximal period. To justify the use of stable, longitudinally chaotic spatial configurations induced
the chaotic qualifier we need to show that as the size of thby undulated boundaries in a simple two-dimensional
system increases, these periodic configurations approach orgaction-diffusion model that does not otherwise display any
that could be characterized as chaotic in some way. Okind of chaos. We have demonstrated that these type of
course, to numerically carry out this process we would needboundaries can be convincingly mapped into spatially peri-
to consider very long channels. Unfortunately though, perodic parametric modulations in a one-dimensional approxi-
forming direct simulations on the fully two-dimensional mation to the original system. In a dynamical-systems ap-
model soon becomes computationally prohibitive as theproach to the study of stationary solutions, these modulations
number of the channel undulations increases. However, haplay the role of a temporal time-periodic forcing capable to
ing demonstrated that the STMA accurately describes thdrive a nonlinear second-order OD@rdinary differential
qualitative features of the full model, we can concentrate ouequation into chaotic behavior. The diffusive character of
attention on the behavior of the approximate modelBd). our original model ensures precisely that the relevant ODE is
In Fig. 5 we summarize the results from the numericalin fact, second order and that the presence of chaotic station-
integration of Eq(3.1) using the same parameter values as inary solutions is expected at this level of approximation. Pre-
Fig. 3 with the exception of the domain size which now isvious results exis{6,20,2] showing that spatial periodic
much larger. An asymptotically stable configuration ismodulation of some parameters intrinsic to the dynamics
shown in(a), while (c) displays the projection of the trajec- may originate spatial chaos in relatively simple reaction dif-
tory in phase spaceA(A,). The power spectrum of\(x) fusion models. However, to our knowledge, the present is the
plotted in Fig. b) shows the typical broadband feature char-first example in which a straightforward dynamical systems
acteristic of chaotic trajectories. As a further indication of theapproach is used to establish the existence of disorder in
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two-dimensional systems due to the influence of the boundramical systems of interest. For example, it is possible that
aries. low Reynolds number fluid flows through a space-
The consequence of our analysis is that chaotic configuperiodically perturbed pipeline, or even through a realistic
rations shouldexistin virtually any of the experimental sys- channel of shape similar to the ones considered here, can
tems commonly used to study pattern formation, providedjisplay frozen spatial cha¢$7]. A numerical search for this
that boundary conditions such as those studied here are innanifestation of “frozen turbulence” at the level of Navier-
posed. Thestability of these chaotic configurations should be gigkes equations is currently in progress. We expect this
discussed in each particular case. While in our model stabilphservation to promote also experimental work both in the

|ty comes from the tendency of the dynamiCS to minimizearea Of pattern formation and in hydrodynamics_
Eq. (2.3, therefore minimizing interface lengths and leading

to pinning of these interfaces to the narrows of the channel,
the mechanism for stability in other systems may be differ-
ent. Apart from the direct application to pattern forming sys-
tems, the idea of boundary-generated spatial chaos could be Financial support from PB94-1167 and PB97-0141-
speculatively transferred to other nonlinear extended dy€02-01 is greatly acknowledged.
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