
Polarization Properties of

Vertical Cavity Surface Emitting Lasers

M. San Miguel

IMEDEA (Instituto Mediterr�aneo de Estudios Avanzados, CSIC-UIB) 1

Campus Universitat Illes Balears
E-07071 Palma de Mallorca, Spain

1 Introduction

Vertical Cavity Surface Emitting Lasers (VCSELs) are expected to become some of the most popular
laser diodes in the near future. Their general characteristics, performance, fabrication aspects and
applications are reviewed in other chapters of this book (Blum, 1999; Ebeling, 1999). A peculiarity
of these lasers, as compared to conventional edge emitting laser diodes, is that, due to their di�erent
geometry, the polarization of the laser light is not well stabilized. This becomes a problem for
applications which require a well stabilized polarization and it has motivated the proposal of a number
of methods to �x the polarization state of the emitted light. These methods include introducing
polarization sensitive DBR mirrors (Ser et al., 1995), geometrical or stress-induced anisotropies
(Mukaihara et al., 1993) or engineering of the semiconductor material or the growth process (Chavez-
Pirson et al., 1993; Sun et al., 1975) to favor the gain of one of the two independent polarization
directions. A di�erent attitude is, instead of suppressing the vector degree of freedom associated
with the polarization of light, to learn how to control and use it in possible applications based on
the polarization state such as optical switching (Nishikawa et al., 1995; Kawaguchi and Kawakami,
1977), information processing or storage, etc. This requires the understanding of the basic physical
mechanisms that control the polarization of laser light. Such understanding should make possible to
follow the path indicated in the title of this school: \From quantum physics to smart devices". In
these lectures I review, from a laser physics point of view, a macroscopic modeling of VCSELs which
incorporates those basic mechanisms.

1.1 Phenomenology of Polarization Selection in VCSELs

Light emitted from VCSELs is typically linearly polarized, with the vector �eld randomly oriented
in the plane transverse to the light emission direction or with a preferred orientation along one of
two orthogonal crystal axis on that plane. Close to threshold the VCSEL generally emits in the
fundamental transverse mode. With this transverse pro�le �xed the polarization direction can be
stable as the injection current is increased (Koyama et al., 1991) or often a switch to the orthogonal
polarization state occurs for some value of the injection current (Pan et al., 1993). A switch back
to the polarization selected at threshold can also occur by further increasing the injection current
(Choquette et al., 1994a). The switching processes still occur in a geometry which tends to equalize
the gain of the two eigenpolarizations and when the cavity resonance is always detuned to the same
side of the gain peak (Choquette et al., 1995a). The polarization switching often shows hysteresis
(Kawaguchi et al., 1995), so that the switch occurs for di�erent values of the injection current when
this is increased and decreased. Polarization switching has also been observed when driving the
laser with electrical pulses shorter than the thermal relaxation time, so that temperature e�ects do
not come into play (Mart��n-Regalado et al., 1997c). Simultaneous emission in the two independent
linearly polarized modes with di�erent emission frequencies (Choquette et al., 1994b; Choquette
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et al., 1995b) as well as in these two modes but with the same emission frequency (elliptically
polarized light) (van Doorn et al., 1997) have been reported.

Transverse modes of higher order than the fundamental (Chang-Hasnain et al., 1991; Li et al.,
1994) start lasing for values of the injection current that strongly depends on the dimensions of the
stripe contact. It often occurs that after a polarization switching in the fundamental mode, further
increase of the injection current leads to the appearance of a �rst order transverse mode (Choquette
et al., 1994b; Ser et al., 1995). The polarization switching in the fundamental mode disappears if
the diameter of the contact is reduced (Ser et al., 1995). It is commonly observed that the �rst order
transverse mode starts lasing orthogonally polarized to the fundamental mode (Choquette et al.,
1994b; Ser et al., 1995; Fiedler et al., 1996; Epler et al., 1996). There are however indications that
this fact might be associated with a red shift of the gain relative to the cavity resonance, while for a
strong blue-shift the �rst order transverse mode appears polarized parallel to the fundamental mode.
In general the emergence of successive higher order modes is strongly correlated with changes of
polarization (Epler et al., 1996).

Transverse modes of di�erent order are separated in frequency 100-200 GHz, while transverse
modes of the same order are separated in frequency by birefringence. This separation can vary from
smaller than 1 GHz up to tens of GHz. Birefringence is believed to have two main origins. There
is a main and systematic contribution due to the electro-optic e�ect during laser operation with a
drive voltage (Hendriks et al., 1997) and a random contribution due to the elasto-optic e�ect (van
Doorn et al., 1996b). The second contribution is due to residual strain in the fabrication process or
in the electrical contacts. This e�ect can be used to change the value of the birefringence by locally
burning holes in the device with a solid state laser (van Doorn et al., 1996a).

Thermal e�ects are another important aspect which inuences polarization properties of VCSELs.
Increasing the operating current produces selfheating of the device mostly due to the series resistance
in the DBR mirrors. This leads to the reversible extinction of the output light. The reason for that
is that the threshold current has a parabolic dependence with temperature. The resonant frequency
selected by the short optical cavity red-shifts with temperature, but the gain pro�le shifts at a larger
rate, so that eventually the resonance frequency is outside the range of frequencies for which there is
positive gain. The minimum threshold current corresponds to alignment of the cavity resonance and
the gain peak frequencies. The heating of the device also gives rise to thermal lensing that produces
an e�ective index guiding e�ect.

1.2 What determines the polarization state of light?

This general question was posed and answered in rather general terms in the early days of laser
physics (de Lang et al., 1971; van Haeringen, 1967; Lenstra, 1980; Stephan and May, 1998): The
polarization state of light emitted by a laser depends on two main ingredients. The �rst one is the
angular momentum of the quantum states involved in the emission or absorption optical transitions.
Emission of a photon with right (left) circular polarization corresponds to an allowed optical transition
in which the projection of the total angular momentum of the gain medium on the direction of light
propagation changes by +1 (�1). This �rst ingredient of polarization selection reects the nonlinear
dynamics of the gain medium. The second ingredient is associated with the linear e�ects of the
laser cavity. The anisotropies (birefringence, dichroism), geometry, detuning and waveguiding e�ects
of the cavity lead to a preference for a particular polarization state of the laser light. These two
ingredients can compete or be complementary, their relative importance depending on the type of
laser.

Di�erent atomic gas lasers emit linearly, circularly or elliptically polarized light, and such po-
larization states have been identi�ed, for nearly isotropic laser cavities, with di�erent atomic or
molecular optical transitions. If the gain medium selects linearly polarized light, birefringence deter-
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mines preferred directions for this linear polarization. Polarization switching between these preferred
orientations can be then explained by phase-amplitude coupling due to the combined e�ect of bire-
fringence and detuning: A switching between two orthogonally polarized modes with very similar
gains is observed when changing the cavity length of a birefringent cavity (de Lang et al., 1971).

A natural question is which of those two ingredients of polarization selection matters in semi-
conductor lasers. For conventional edge emitting lasers, cavity e�ects associated with geometry are
usually predominant: Light is polarized in the plane of the active region since the orthogonal direc-
tion has much larger cavity losses. However, the cylindrical symmetry of the VCSEL, together with
the isotropy of the linear optical properties of III-V compounds grown on the [001] direction, make
the nonlinear gain dynamics much more important. In addition, the linewidth enhancement factor
of semiconductors (�-factor) gives the same type of amplitude-phase coupling than detuning in a gas
laser, but its magnitude is considerably larger. By analogy with gas lasers, it is therefore expected
that the combined e�ect of saturable dispersion associated with the �-factor and birefringence is also
an important mechanism of polarization selection and in VCSELs.

In these lectures I discuss a model for polarization dynamics of VCSELs that takes into account
those two ingredients. I mention here that two other simpli�ed explanations of polarization selec-
tion in the fundamental transverse mode have also been proposed. Both disregard phase-amplitude
couplings. They rely on the idea that the di�erences in gain of the two polarization modes stabilize
one of the modes. A �rst explanation is based on the thermal e�ects discussed above: The two po-
larization modes have di�erent gain because of their di�erent frequency due to birefringence. As the
injection current is increased the faster red-shift of the gain curve, as compared with the red-shift
of the central resonant cavity frequency, leads to a change of sign in the gain di�erence between
the two polarization modes, and thus to a polarization switching (Choquette et al., 1995b). An-
other mechanism invoked in weak index-guided VCSELs is the combined e�ect of birefringence and
spatial-hole burning, which causes di�erences in the modal gain of the waveguide transverse modes
with orthogonal polarization (Valle et al., 1996; Panajotov et al., 1998). In both explanations the
di�erences in gain can be minute. These di�erences seem to be what determines which polarization
is selected at threshold, but they do not seem enough to account for polarization switching. In any
case they do not explain much of the phenomenology described above, so that additional physical
mechanisms need to be considered. In particular, thermally induced switching does not account for
hysteresis in the switching current and for the observed switchings at constant temperature.

1.3 Outline

In the next section the Spin Flip Model (SFM) for polarization dynamics is introduced (SanMiguel
et al., 1995). In the context of this model the operation of a VCSEL in the fundamental transverse
mode is discussed in section 3. Transverse e�ects in index and gain guided devices are discussed in
section 4. Section 5 discusses polarization properties of optically pumped VCSELs. The di�erences
between the susceptibility of a two-level type of model and a quantum well semiconductor are reviewed
in the section 6. The consideration of a proper semiconductor susceptibility within the SFM model
and its consequences on the dynamics of polarization selection are also outlined in the �nal section.

2 Spin Flip Model (SFM) for Polarization Dynamics

The geometry of the VCSEL is such that the laser vector electric �eld E lies in the plane transverse
to the longitudinal direction z of light emission. Its linear components (Ex; Ey) and the circularly
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(E+; E�) polarized components satisfy the relation

E� =
1p
2
(Ex � iEy): (1)

A �rst important e�ect of the optical cavity is the selection of a longitudinal mode kc with a resonant
cavity frequency �. Due to the the high mirror reectivities of the VCSEL this produces a vectorial
standing wave with a forward and backward propagating components. In a mean �eld approximation
one can average out the longitudinal z dependence of these amplitudes and write the electric �eld as

E = F(x; y; t)eikcz�i�t + c:c:: (2)

One is interested in the equation satis�ed by the slowly varying amplitude F(x; y; t) which can
be understod as the amplitude of the selected longitudinal mode. From Maxwell's equations one
identi�es that the source of F is the slowly varying amplitude of the macroscopic material polarization
P(x; y; t). The linear cavity e�ects amount to a linear cavity susceptibility matrix M . The basic
equation for the �eld is then

@tF =
ic2

2�n2e
r2
?F +P�MF: (3)

The �rst term on the right hand side represents di�raction in the transverse plane (where ne is the
background index of refraction) and the other two terms are the two basic ingredients of polarization
selection: material gain dynamics and e�ects of the optical cavity.

2.1 Cavity, Band Structure and Optical Transitions

The cavity susceptibility M can be written as

M = �I � �; (4)

where �, which represents the cavity losses, is the inverse of the photon cavity lifetime. The matrix �
represents the cavity anisotropies (van Haeringen, 1967). Generally speaking, the hermitian part of �
is associated with anisotropic properties with respect to the moduli of the two complex components of
the �eld (amplitude anisotropies or dichroism). The antihermitian part of � is associated with phase
anisotropies (birefringence). The matrix � can be written in the linear or in the circularly polarized
basis of the �eld. The diagonal elements of � in the linear basis are named linear anisotropies and
the diagonal elements in the circular basis are the circular anisotropies. In the simplest case in which
one can neglect circular anisotropies and when amplitude and phase anisotropies are along the same
directions, � is written in the linear basis as

� = �(a + ip)
�
1 0
0 �1

�
: (5)

a is the amplitude anisotropy and gives di�erent losses to the two linearly polarized components,
while p is the phase anisotropy which gives them a di�erent frequency. Their separation in frequency
is a measure of cavity birefringence.

The other basic ingredient in Eq.(3) is the material polarization P of the gain medium. The
coupled set of equations for F and P receive the name of Maxwell-Bloch equations. Deriving an
equation for P requires knowledge of the allowed optical dipole transitions underlying the electron-
hole recombination process in the quantum well, and this, in turn, depends on the band structure
of the semiconductor. The band structure of direct band gap III-V compounds, in the free carrier
approximation, can be calculated perturbatively from the Bloch states found at zero transverse wave
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Figure 1: a) Schematic representation of the band structure of a quantum well. b) Lasing transitions associated with
right (E+) and left (E

�

) circularly polarized emission. The two two-level systems are coupled by spin ip processes
(j).

number k?(Chow et al., 1994). These states are important because they have a well de�ned quantum
number for the angular momentum and �x the symmetries of the states. The conduction band state
have the symmetry of an atomic s-state with zero orbital angular momentum, while the valance band
states have the symmetry of an atomic p-state with orbital angular momentum l = 1. Due to spin
orbit coupling the conduction band states have a total angular momentum J = 1=2, while the valence
band states have J = 3=2; 1=2. The split-o� valence band associated with the state J = 1=2 will be
disregarded because of its lower energy. The quantum well con�nement breaks the degeneracy of the
J = 3=2 state leading to a HH (heavy hole) state (Jz = �3=2) of higher energy than the LH (light
hole) state (Jz = �1=2). The band structure is calculated from these k? = 0 states through a 4x4
matrix Luttinger Hamiltonian associated with the �rst energy level of the quantum well and the HH
and LH states. The HH and LH bands emerge as indicated in Figure 1a, but there is band mixing, so
that the two basis states of the HH band have a contribution of states with Jz = �1=2. This general
picture of band structure can be modi�ed by e�ects of strain that will not be considered here.

In a �rst approximation one can neglect recombination processes from the conduction to the LH
band which is at a lower energy than the HH band. For the transverse electric �eld of a VCSEL
and for electronic states with k? = 0, the allowed electric dipole transitions that result in electron-
hole recombination are those in which �Jz = �1. Emission of right circularly polarized photons
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corresponds to �Jz = �1 and left circularly polarized photons to �Jz = +1. For the electronic
states at the band edge there are thus two allowed transitions between the conduction and heavy
hole band: the transition from Jz = �1=2 to Jz = �3=2 associated with right circularly polarized light
and the transition from Jz = 1=2 to Jz = 3=2 associated with left circularly polarized light. There
picture that emerges is that of two two-level lasing transitions (two "channels" of light emission)
with di�erent circular polarizations as indicated in Figure 1b. Di�erent processes that change the
spin of the carriers with a spin ip rate j couple these two two-level systems.

For electronic states with nonzero transverse wavenumber this picture is not so simple because
of the band mixing discussed above. Still, the main contributions are well described by the simple
scheme of Figure 1b. The main conceptual di�erence which occurs when considering band mixing
e�ects is that they provide a nonlinear mechanism of coupling between the carrier densities associated
with the two lasing transitions. For many purposes this just amounts to an e�ective value of the
spin ip rate, so that no qualitative di�erences are found in the general properties of polarization
selection and switching.

2.2 Maxwell-Bloch Equations, Susceptibility and Rate Equations

The dynamics of the radiation-matter interaction in the four-level model of Figure 1b follows from a
standard density matrix calculation (Sargent et al., 1974). This analysis leads to a set of equations,
which with Eq.(3), form the closed set of Maxwell-Bloch equations of the model (SanMiguel et al.,
1995):

@ tF�(x; y; t) = ��(1 + i�)F� + P� + i
c2

2�ne2
r2
?F� � (a + ip)F� (6)

@ tP�(x; y; t) = �?(1� i�)P� + ?a(D � d�D0)F� (7)

@ tD(x; y; t) = C(x; y)� eD +Dfr2
?D � [(F+P

�
+ + F�P

�
�) + c:c:] (8)

@ td(x; y; t) = �sd+Dfr2
?d� [(F+P

�
+ � F�P

�
�) + c:c:]: (9)

These equations are written for the two circularly polarized components of F and P which correspond
naturally to each of the two coupled two-level systems of Figure 1b. Eq.(6) is just Eq.(3) where the
form of � in Eq.(5) has been used and where the equations are written with a change of reference
frequency such that the laser emission frequency is close to zero at threshold. This introduces in
Eq.(6) the normalized detuning between the resonant cavity frequency � and the bandgap frequency
!g (frequency di�erence between the upper and lower levels of Figure 1b):

� =
� � !g
?

(10)

where ? is the decay rate of the material polarization. Each component of the material polarization
P� is directly coupled to the carrier density D� of the corresponding two-level system with a di�er-
ential gain parameter a. The variable D = D+ +D� represents the total carrier density referred to
its transparency value D0, while d = D+�D� represents the di�erence between the two carrier pop-
ulations associated with emission of E+ and E�. The two channels of emission are pumped with the
same injection current C(x; y): In these equations one has further introduced in a phenomenological
way carrier di�usion with di�usion coe�cient Df , a decay rate e for electron-hole recombination
and a decay rate s = e + 2j which takes into account the spin relaxation processes that mix the
carrier populations with opposite values of Jz. A detailed derivation of Eqs.(6)-(9) can be found
elesewhere (SanMiguel et al., 1995; Martin-Regalado, 1997). Note that this type of modeling does
not include thermal e�ects and presumes a symmetry in the transverse plane that only exists for
ordinary VCSELs grown on the [001] crystallographic direction.
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Eqs.(6)-(9) can be simpli�ed in the spirit of the ordinary rate equations of a semiconductor laser
(Agrawal and Dutta, 1986) when restricting them to situations in which a single transverse mode is
relevant. In this case one looks for equations for the amplitude of this mode, which �xes a transverse
pro�le, and di�raction and carrier di�usion are eliminated from the description. In addition one
invokes large di�erences in the time scales of relaxation to eliminate the material polarization: The
spin mixing described by s typically occurs on larger time scales than photon decay, where ��1 � 1
ps. The fastest time scale included in Eqs.(6)-(9) is the material polarization decay rate �1? which
is on the order of tens of femtoseconds, while the slowest decay is given by the carrier decay rate
�1e � 1 ns. Therefore

? >> e; s; � (11)

so that in time scales relevant for VCSEL operation P follows the dynamics of the other variables
and it can be adiabatically eliminated. Note however, that d typically evolves in a dynamical scale
intermediate between D and F� and, within this model, it plays a crucial role in the nonlinear
dynamical properties of the VCSEL. The elimination of P de�nes, through Eq.(7), a susceptibility
matrix �,

P = ia�F; (12)

where the form of � in the circular and linear polarization basis is

�� = �
�
D + d�D0 0

0 D � d�D0

�
; �x;y = �

�
D �D0 id
�id D �D0

�
: (13)

This form of � indicates that the di�erence in carrier populations associated with the emission of
E+ and E�, given by the variable d, gives a di�erent susceptibility for the two circularly polarized
components and breaks the rotational symmetry in the x; y plane. The prefactor � has the typical
form of a two-level susceptibility

i� =
1 + i�

1 + �2
(14)

with an imaginary part associated with gain and a real part which gives dispersion (index of re-
fraction). The conventional �-factor (Henry, 1982; Osinski and Buus, 1987) of semiconductor lasers
de�ned by

� = �Re(@D�)
Im(@D�)

(15)

appears here as the normalized detuning (10).
Upon elimination of the material polarization replacing (12) in Eqs.(6),(8),(9) and an appropriate

choice of units so that

E� � F�; N � (D �D0); n � d

one �nds

dE�
dt

= �(1 + i�)(N � n� 1)E� � (a + ip)E� (16)

dN

dt
= �e(N � �)� e(N + n)jE+j2 � e(N � n)jE�j2 (17)

dn

dt
= �sn� e(N + n)jE+j2 + e(N � n)jE�j2; (18)

where � is the spatially integrated injection current normalized to threshold.
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As compared with Eqs.(6)-(9), these equations do not contain a frequency dependent gain and
dispersion, whose values have been �xed at the operating frequency of the laser. As a consequence,
the two polarization modes, splitted in frequency by birefringence, are given the same material gain.
However, small di�erences in gain associated with birefringence can be taken into account through
the amplitude anisotropy parameter a. While in (6)-(9) this parameter only models intrinsic cavity
anisotropies, it can also be used here to account for material gain di�erences. Eventually it can be
made to depend on injection current or temperature.

2.3 Physical Processes: �-factor and Spin Flip Rate

In addition of nonlinear gain mechanisms, the model given either by the set of Eqs.(6)-(9) or the
set (16)-(18) includes three fundamental physical processes, which will be shown to control the
polarization state to a large extent: Phase-amplitude coupling introduced through the �-parameter,
birefringence (p) and spin mixing (s). In the limit of very fast spin relaxation so that n = 0, and
disregarding phase dynamics (� = 0, p = 0), (16)-(18) reduce to the conventional rate equation
description of a semicondutor laser in terms of photon and carrier numbers (Agrawal and Dutta,
1986).

In the study of the semiconductor laser the �-parameter accounts for three main related ef-
fects: phase-amplitude coupling which introduces saturable dispersion, broadening of the linewidth
(\linewidth enhancement factor") and carrier antiguiding (\antiguiding factor"). We are not here
concerned with the linewidth of the laser (see for example (Ebeling, 1999)). Phase-amplitude coupling
is included through the consideration of equations for the complex �eld amplitudes. It is important
to note that, at the level of description of (16)-(18), and from a formal point of view, the sign of �
is not important since the equivalent equations for the complex conjugate �elds have the opposite
sign of �. For the same reason the absolute sign of p is not important, but only its sign relative to
the one of �. Of course, the absolute direction of frequency chirp depends on the choice of the sign
of � together with the frequency reference frame (Eq.2). The guiding or antiguiding e�ect requires
the consideration of transverse e�ects, and its sense is determined by the relative sign of � and the
di�raction term in (6)-(9). This point, together with a critical analysis of the use of two-level type
susceptibilities for a semiconductor laser will be further discussed in section 6.

The spin ip rate s has to be considered in this model as an e�ective parameter describing a
variety of microscopic processes. From the point of view of laser physics it is also a mechanism of gain
saturation. Spin relaxation processes in semiconductor materials (Meier and Zachachrenya, 1984)
have been studied through polarization and time resolved photoluminescence experiments (Damen
et al., 1991; Bar-Ad and Bar-Joseph, 1992; Oestreich et al., 1996), through the polarization depen-
dence of photoluminescence light with the strength of a transverse magnetic �eld under continuous
optical excitation (Hanle e�ect) (Fishman and Lampel, 1977; Snelling et al., 1991) and also through
time resolved magneto-optical techniques (Kikkawa et al., 1997; Kikkawa and Awschalom, 1998).
Important di�erences are found in bulk and quantum well materials and di�erent mechanisms exist
for spin relaxation of electrons, holes and excitons that in addition are known to be temperature
and doping dependent. In a VCSEL in operating conditions there is a dense plasma of electron and
holes with no signi�cant exciton contribution. Since holes in a quantum well are known to relax
much faster than electrons, the important spin relaxation processes are those of the electrons at
roomtemperature. Experimental results for quantum well materials give a characteristic time of elec-
tron spin relaxation which typically ranges from about 10 ps at room temperature to 200 ps at low
temperature (Sham, 1993; Tackeuchi et al., 1996). Recent results on undoped and n-doped quantum
wells indicate that spin dynamics at room temperature are dominated by electrons and con�rm an
electron spin relaxation time of tens of picoseconds (Britton et al., 1998; Miller, 1999). However,
electron spin lifetimes of nanoseconds have been measured in moderately n-doped II-VI semiconduc-
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tor quantum wells at room temperature (Kikkawa et al., 1997). The spin lifetime is found to be a
nonmonotonic function of carrier density, and for a lower n-doping level of bulk Ga-As semiconductor
materials, lifetimes larger than 100 ns have been observed at a temperature of 5 K (Kikkawa and
Awschalom, 1998). These lifetimes are far longer than the electron-hole relaxation time and in these
cases the spin lifetime becomes the slow time scale of the system. Three main mechanisms have
been identi�ed for electron spin relaxation (Fishman and Lampel, 1977; Sham, 1993): Elliot-Yafet
(due to spin-orbit interaction), Bir-Aranov-Pikus (exchange interaction between electron and holes)
and Dyakonov-Perel. The latter arises from the lack of inversion symmetry in III-V compounds
giving a spin sublevel splitting which can be regarded as an e�ective magnetic �eld. While there
are indications that the Bir-Aranov-Pikus mechanism dominates at low temperatures when the holes
density is important (Sham, 1993), the Dyakonov-Perel mechanism consistently explains the data for
undoped and n-doped samples at room temperature (Tackeuchi et al., 1996; Kikkawa et al., 1997;
Britton et al., 1998).

Very little is known about the relative importance of the di�erent mechanisms of spin relaxation
and the value of the electron spin relaxation time under the high-density, room temperature condi-
tions of a VCSEL above the lasing threshold. Some proposals and experiments, however, have been
made to determine s on the basis of the SFM model introduced above. One is based on measuring
the e�ect of a longitudinal magnetic �eld on the ellipticity of the emitted light due to the Zeeman
splitting of the magnetic sublevels (Serrat et al., 1996; van Doorn et al., 1997). Another one is based
on the �tting of results for the value of the injection current at which a polarization switching occurs
under conditions of constant temperature (Mart��n-Regalado et al., 1997c; Martin-Regalado, 1997).
Other measuraments (van Exter et al., 1998a) are based on the uctuations of the ellipticity and the
polarization direction as well as on properties of the optical spectrum (van der Lem and Lenstra,
1997; van Exter et al., 1998b). A �nal proposal is based on the analog of the Hanle e�ect for an
optically pumped VCSEL (Gahl et al., 1998). These studies give an estimate of the characteristic
time of spin relaxation in the range of 1-15 ps. Given their character of indirect measurements, the
actual value of the electron spin relaxation time and of the e�ective parameter s determined from
them is rather uncertain. However, it will be seen that polarization selection and switching is very
sensitive to its precise value.

3 Fundamental Transverse Mode Operation

The basic model given by Eqs.(16)-(18) describes a VCSEL operating in the fundamental transverse
mode with two polarization modes with di�erent frequencies. The predictions of this model concern-
ing polarization selection and polarization switching are summarized in this section (Mart��n-Regalado
et al., 1997d).

3.1 Basic Polarization States

The set of Eqs.(16)-(18) admit a number of solutions which can be generally written as

E� = Q�e
i(!�t� )+i� ; N = N0 ; n = n0 ; (19)

where � is the arbitrary laser phase. Solutions with a well de�ned polarization are those with a single
frequency (!+ = !�). Circularly polarized solutions are those in which either Q+ = 0 or Q� = 0.
Linearly polarized solutions are those with Q+ = Q�. For these solutions the angle  gives the
orientation of the linearly polarized light in the x; y plane. Ellipticaly polarized solutions are those
in which the two real amplitudes Q� are nonzero and di�erent. The ellipticity of these solutions is
given by (Q+ �Q�)=(Q+ +Q�)
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Figure 2: Basic polarization states obtained for a = 0. The optical spectra of the complex �eld amplitudes Ex

(continuous line)and Ey (dashed line) is shown. The frequency splitting between the two linearly polarized modes is
2p. They frequency lock in the elliptically polarized state, but have di�erent power strengths.

Circularly polarized states are never found to be stable solutions of (16)-(18). For a perfectly
isotropic VCSEL (a = p = 0) linearly polarized states exist, but with an arbitrary orientation
 . Birefringence alone (p) is able to �x the direction of polarization selecting two preferred values
of  which can be identi�ed with the x̂{ and ŷ{linearly polarized states. Additionally, one �nds
elliptically polarized states in which the the x̂{ and ŷ{ linearly polarized modes are frequency locked
(Figure 2)

In general the x̂{polarized solution is given by

Q2
� =

1

2

��N0

N0
;  = 0 ; (20)

!� = !x = �p + a� ; (21)

N0 = 1 +
a
�
; n0 = 0 ; (22)

while the ŷ{polarized solution is

Q2
� =

1

2

��N0

N0
;  =

�

2
; (23)

!� = !y = p � a� ; (24)

N0 = 1� a
�
; n0 = 0 : (25)

These two states have di�erent amplitudes and di�erent threshold values �th = N0 due to the
amplitude anisotropy a. This anisotropy also causes that the frequency di�erence !x� !y does not
coincide with the birefringence induced splitting 2p. Note that which of the two linearly polarized
modesis the high frequency mode depends on the sign of p as well as on the choice of reference frame
(Eq.2).
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In addition of these basic states with a well de�ned polarization, it is also possible to �nd states in
which the two independent components of the polarization have di�erent amplitudes and a di�erent
frequency (or several frequencies). Those dynamical states describe polarization mode partition
which would be experimentally observed as a �nite time averaging of these states.

3.2 Stability analysis

A linear stability analysis of the basic polarization states introduced above describes the growth
or decay of small uctuations around these states. This analysis identi�es the relevant parameters
and mechanisms which control polarization selection and switching. The eigenvalues found in such
a linear analysis determine the stability boundaries of the di�erent polarization states. They also
determine the response to spontaneous emission uctuations, and therefore the properties of the
optical spectrum (van der Lem and Lenstra, 1997; van Exter et al., 1998b). The main qualitative
conclusions of such analysis for the linearly polarized states are the following (Mart��n-Regalado et al.,
1997d):

� The linear problem is always separable in two independent problems. The �rst problem refers
to the uctuations of the total laser intensity I = jE+j2 + jE�j2 and the total carrier number
N , and it is independent of cavity anisotropies (a and p), as well as of the spin relaxation
rate s. The analysis of this �rst problem just reproduces the well known relaxation oscillations
of a semiconductor laser. It is equivalent to what follows from ordinary rate equations for the
laser intensity and the total carrier density (Ebeling, 1999). The second problem contains all
the properties of the polarization dynamics. It describes coupled uctuations of E+�E� with
the di�erence in carrier populations with di�erent spin number (n). Equivalently, it describes
coupled uctuations of the direction of polarization  , ellipticity and n.

� Inspection of the characteristic equation that determines the stability of linearly polarized states
reveals the importance of di�erent parameters. For the perfectly symmetric laser (a = p = 0)
there is a vanishing eigenvalue associated with the arbitrary orientation of the linearly polarized
state. For a nonisotropic laser there are domains of parameters in which either only one of the
linearly polarized states is stable, or the two are linearly stable (bistability) or none is stable
(see Figures 3 and 4). If p = 0 only one of the two linearly polarized solutions is stable. When
� = 0, the domain of bistability is the only one that survives. This is strictly so for a = 0, but
still true for reasonably small a except for extremely large or small birefringence. Therefore,
for � = 0 and typicalvalues of the other parameteres, whatever state is selected at threshold
(due to a lower threshold because of amplitude anisotropies), it will always remain stable. The
change in the relative stability of the two linearly polarized modes is thus due to the combined
e�ect of birefringence and saturable dispersion. Likewise, in the limit of in�nitely fast spin
relaxation (�1s = 0) there is again only bistability. A �nite spin relaxation time is thus a
necessary condition for changes of stability and polarization switching.

� In the domain of parameters in which a linearly polarized state is stable its optical spectrum
shows two qualitatively di�erent regimes. These regimes are better understood for small am-
plitude anisotropies (a � 0): For the symmetric laser (p = 0) there is a regime of fast spin
relaxation with exponential relaxation of uctuations and a regime of slow spin relaxation in
which one �nds damped \polarization relaxation oscillations" (SanMiguel et al., 1995). In these
oscillations the ellipticity and n oscillate at a frequency of the order of the laser relaxation os-
cillations. The two regimes are separated by a critical value of the spin ip rate s of the order
of the frequency of the relaxation oscillations. For non vanishing birefringence, this second
regime is continued into one in which the \polarization relaxation oscillations" persist far from
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threshold, while uctuations of the direction of polarization  (�xed by birefringence) relax
exponentially. However, close to threshold and for fast spin relaxation, a new regime appears
in which n relaxes exponentially with a time constant �1s while damped coupled oscillations
of the ellipticity and the polarization orientation  emerge. These oscillations occur at a fre-
quency which grows linearly with the distance to threshold. This frequency is thus di�erent
from the relaxation oscillation frequency which grows with the square root of the distance to
threshold. It seems that many VCSELs operate in this last regime, and optical spectra showing
these oscillations have been recently measured (van Exter et al., 1998a). Note however that
relatively small variations in injection current and spin ip rate lead from one to the other of
the two regimes just described.

3.3 Polarization Switching

Polarization switching occurs when one of the two linearly polarized states looses stability. The
switching point is obtained from the analysis discussed above. For a �xed value of the �-parameter
this is studied in terms of two control parameters commonly measured in experiments of polarization
switching, the injection current � normalized to the threshold current, and birefringence measured
by p. Typical polarized light-current measurements correspond to vertical scannings in (�; p)
diagrams since birefringence is a �xed characteristic of a given VCSEL, which is nearly independent
of the injected current. Stability diagrams are summarized in Figure 3 and Figure 4. These �gures
correspond to two general situations in which the relative gain-to-loss ratio between the modes, given
by a, is di�erent. In each case a di�erent polarization state is selected at threshold. In both cases
elliptically polarized states are only stable in a narrow range of parameters along the curve that
determines the stability of the x̂-polarized solution and in the side of low birefringence.

Figure 3 shows the stability diagram for VCSELs where the gain di�erence favors the ŷ-polarized
mode at threshold (a > 0) so that the threshold for the x̂-polarized mode is higher than for the
ŷ-polarized mode (�xth > �yth). The ŷ-polarized mode is stable to the left and below the dashed line.
The x̂-polarized mode is stable to the right and above the solid line. Stable ŷ-polarized emission
occurs close to threshold for any value of the birefringence. For low birefringence VCSELs such that
p < s=(2�), the ŷ-polarized mode selected at threshold remains stable as the injection current is
increased. However, if p > s=(2�), an abrupt ŷ ! x̂ switching occurs as the dashed line is crossed
when increasing the injected current. The switching occurs by destabilization of the mode with the
higher gain-to-loss ratio in favor of the weaker mode. In addition, the switching current �sw linearly
depends on the amplitude anisotropy a,

�sw
�yth

= 1 +
2(2s + 42p)

�(2�p � s)

a
e

: (26)

Such a dependence is consistent with experimental results in gain-guided VCSELs operated at con-
stant temperature of the active medium (Mart��n-Regalado et al., 1997c). Note also that when de-
creasing the injection current the reverse switching x̂! ŷ would occur when crossing the continuous
line, so that hysteresis in the switching current is predicted.

For gain di�erences favoring x̂-polarization a < 0, so that �xth < �yth. In this case the x̂- polarized
mode is stable below the solid line, while ŷ-polarization is stable to the left and above the dashed curve
(see Figure 4). Stable x̂-polarized emission is expected close above threshold for any birefringence
value. For VCSELs in which p < s=(2�), x̂ ! ŷ polarization switching occurs when the injection
current is increased so that the solid line is crossed. The switching is again from the mode of higher
gain to the one of lower gain and higher threshold. The switching current is given by
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p small < crit
p = s=(2�) < p large

Figure 3: Stability diagram and polarization switching for positive amplitude anisotropy. In region I the two linearly
polarized solutions are stable (bistability region) and in region II none of them is stable. In region III x̂-polarized
solution is stable and in region IV the ŷ-polarized solution is stable. Polarization stability for small birefringence and
polarization switching for high birefringence are shown in the bottom �gures, where solid (dashed) line corresponds
to the output power of the x̂ (ŷ)-polarized mode.

�sw
�xth

= 1 +
(2p + 2a)

�(a + �p)� 2p

s
e
: (27)

This switching is not abrupt. Rather it occurs through one of two frequency-degenerate stable
elliptically polarized states. Consequently, elliptically polarized light appears as intermediate states
reached in the destabilization of the linearly polarized solution as the current is increased. Hysteresis
in the switching current, is also predicted here.

The general discussion in section 3.2 makes clear the role of the parameters �, p and s in
determining the stability properties of the di�erent polarization states. According to this discussion
and to the expressions for the switching currents (26)-(27) one concludes that the basic mechanisms
that produce polarization switching in the VCSEL model analyzed here are i) coupling through spin
ip processes (s) of the two carrier populations with di�erent spin number, and ii) the combined
e�ect of birefringence (which couples the two circularly polarized components of the �eld) and phase-
amplitude coupling (with associated saturable dispersion) produced by the �-factor.
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p small < crit
p = s=(2�) < p large

Figure 4: Stability diagram and polarization switching for negative amplitude anisotropy. Same meaning of regions I-
IV than in Figure 3. Polarization switching through dynamical states for small birefringence and polarization stability
for high birefringence are shown in the bottom �gures, where solid (dashed) line corresponds to the output power of
the x̂ (ŷ)-polarized mode.

It is �nally important to note that Figures 3 and 4 are for � > 0 and p > 0. Changing the sign
of p changes the low frequency mode into the high frequency mode. Changing the sign of � means,
in the context of the derivation given here of Eqs.(16)-(18), changing the sign of the detuning (10).
If a is interpreted as arising from a di�erence in material gain due to birefringence, a also changes
sign when the sign of the detuning changes. If the sign of � and a are changed, what happens is that
the x̂-polarized mode becomes stable in the (�, p) domain in which the ŷ-polarized mode was stable
and viceversa. Therefore, changing the sign of � leaves unchanged the existence of a polarization
switching and its nature (abrupt for large birefringence and through intermediate dynamical states
for low birefringence), but the direction in frequency (high ! low or low ! high) is reversed.

3.4 Optical injection

Polarization switching can also be produced by optical injection (Kawaguchi and Kawakami, 1977)
for a �xed value of the electrical injected current: Injecting into the laser an optical signal whose
polarization is orthogonal to that emitted by the laser can produce a polarization switching. Two
di�erent situations have to be considered, switching by an optical pulse (Kawaguchi et al., 1995)
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or switching by continuous optical pump (Pan et al., 1993). In the �rst case polarization switching
occurs for pulses above a certain injected energy which depends on the detuning between the injected
signal and VCSEL frequencies. The fact that the VCSEL remains in the new polarization state after
the switching indicates that it is operating in a bistable domain (region I of Figures 3 and 4).
Switching under continuous optical injection is needed when the VCSEL operates in a domain in
which only one of the polarization states is stable, such as in regions III and IV of Figures 3 and 4.
In this case the laser goes back to the initial state soon after the injected signal is removed. The
switching on and o� occur for di�erent values of the injected power as this is increased and decreased.
These values depend on the frequency of the injected signal, being the switching power minimum
when the injected frequency locks to the frequency of the laser after the switching. This resonant
frequency also separates a region of gradual transition from one of abrupt switching.

Both types of optical switching can be well described by the general model (16)-(18) supple-
mented by an injected �eld (Mart��n-Regalado et al., 1997d). In particular, the experiments of (Pan
et al., 1993) are seen to correspond to switching by injection of a ŷ polarized �eld in a laser operating
in region III of Figure 3. A quantitative comparison requires knowledge of the VCSEL parameters
introduced in (16)- (18). Besides other general parameters, birefringence is determined by the fre-
quency splitting between the two linearly polarized states and the amplitude anisotropy parameter
a is �xed by the value of the switching current (26) when no optical �eld is injected.

3.5 Longitudinal Magnetic Field

Applying a magnetic �eld in the direction of laser light emission gives and additional way to probe
the mechanisms of polarization selection in a VCSEL. It also opens the possibility of obtaining fast
polarization modulation of the laser output (Serrat et al., 1996; van Doorn et al., 1997; van der
Lem et al., 1998). Within the scheme of Figure 1b, the main e�ect of the magnetic �eld is a Zeeman
splitting of the magnetic sublevels that results in di�erent frequencies !� (di�erent energy di�erences)
for the emission of right and left circularly polarized light. Such frequency di�erence for E+ and E�
can be modeled by including a circular phase anisotropy in the matrix � in (3)-(4). This amounts
to add a term �izE� to the right hand side of (16), where z is a measure of the strength of the
magnetic �eld.

For weak magnetic �elds linearly polarized emission becomes elliptically polarized and switching
occurs between ellipticaly polarized states with di�erent orientations of the main axis of the polar-
ization ellipse. The dependence of ellipticity on magnetic �eld and injection current, as obtained
experimentally, gives a useful way of determining di�erent VCSEL parameters such as the spin ip
rate. For moderate magnetic �elds the optical spectra shows several frequencies and the polarization
becomes modulated in both ellipticity and orientation. For strong magnetic �elds (z >> p; a),
which can be of the order of 1 Tesla, the output emission is almost linearly polarized but with a
direction of polarization that rotates in time. This implies that the x̂ and ŷ polarized output power
oscillate in antiphase with a frequency 2z which is predicted to be of a few GHz.

4 Transverse E�ects and Polarization

Operation of a VCSEL on a single transverse mode has been considered in the previous section. In
that discussion transverse spatial e�ects such as carrier di�usion, light di�raction and spatial hole
burning have been neglected. These e�ects have some importance in the fundamental transverse mode
operation, but they become more important when considering excitation of higher order transverse
modes. In this case, due to the large separation in frequency of the di�erent transverse modes,
consideration of a frequency dependent gain and refractive index become also essential.
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Transverse e�ects are very much dependent on the form of transverse light con�nement. For
index guided devices, mode pro�les are well de�ned and the strategy is then to write equations
for the amplitudes of these modes, much in the spirit of Eqs.(16)-(18). However, for gain guided
devices there is no proper waveguide and modes are not well de�ned. Therefore, the complete set of
partial di�erential Eqs.(6)-(9) must be considered. Proper boundary conditions are determined by
the transverse pro�le of the injected current.

4.1 Index Guided Devices

For cylindrically symmetric weak index-guided devices, birefringence is taken into account by as-
suming that the core refractive index in the ŷ direction is smaller than in the x̂ direction, while the
cladding refractive index is the same in both directions. The appropriate built-in transverse modes
are then the LPmn modes (Valle et al., 1995). Considering a VCSEL with a radially symmetric cavity
that can operate in the fundamental and in the �rst{order transverse modes, the optical �eld can be
written as

F(r; t) = [(E0;x(t) 0;x(r) + E1;x(t) 1;x(r)) x̂+ (E0;y(t) 0;y(r) + E1;y(t) 1;y(r)) ŷ] + cc; (28)

where r is the radial coordinate and subscripts (0,1) denote the LP01 and the LP11 modes, respectively,
obtained by solving the Helmholtz equation (Valle et al., 1996).  0;i and  1;i are the modal pro�les of
the LP01 and LP11 modes and E0;i and E1;i are the modal amplitudes of these modes. The subindex
i = x; y stands for the linear polarization state of the given mode. The theoretical description
proceeds by projecting Eqs.(6)-(9) into equations for the amplitudes E0;i and E1;i (Mart��n-Regalado
et al., 1997b; Valle et al., 1998). The equations obtained in this way include modal gain coe�cients
gj;i(t) (j = 0; 1; i = x; y), de�ned as

gj;i =

R1
0 N(r; t) 2

j;i(r)rdrR1
0  2

j;i(r)rdr
; (29)

as well as polarization cross-gain coe�cients associated with the carrier population variable n(r; t).
For the fundamental transverse mode operation, di�erences in gain between the x̂ and ŷ polarized

modes, as obtained from (29), are due to the combined e�ect of birefringence and spatial-hole burning.
These di�erences become smaller the larger is the step of refraction index, since this implies that the
two polarizationmodes become better con�ned and have a more similar mode pro�le. Such di�erences
in the modal gain have been invoked as a mechanism of polarization selection (Valle et al., 1996;
Panajotov et al., 1998). The question is how this mechanism competes with the polarization e�ects
attributed to spin dynamics and to the �-factor discussed in the previous section. It turns out
(Mart��n-Regalado et al., 1997b) that for typical VCSEL parameters these gain di�erences are very
small, but still e�ective to determine the polarization mode selected at threshold. The parameter a
used in the discussion of section 3 can be understood as a way of modeling these gain di�erences.
However, as the injection current is increased, this selection mechanism is easily overcome by the
mechanisms discussed in section 3. 2 and polarization switching to the polarization mode of lower
gain occurs. Hole burning only causes a small quantitative impact in the location of the switching
point, but it does not alter its nature.

Considering the fundamental and �rst order transverse mode a variety of phenomena occur for
di�erent parameter values (Valle et al., 1998), but unless polarization switching mechanisms are elim-
inated, the �rst order transverse mode appears typically orthogonally polarized to the fundamental
transverse mode.
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Figure 5: L-I characteristic for the linearly x̂ (solid) and ŷ (dashed) polarizations. The near �eld transverse pro�le of
each polarization is shown at the indicated curent values. The injected current I is de�ned here as I = qd

R
C(x; y)dxdy,

where q is the electron charge and d the depth of the quantum well.

4.2 Gain Guided Devices

For gain guided devices, a frequency dependent complex susceptibility is taken into account through
the complete set of equations (6)-(9) of the SFM model. For semiconductor lasers carrier dynamics
produce an antiguiding e�ect, as explained in section 6. However, for VCSELs, this e�ect is overcome
by thermally induced guiding associated with thermal lensing. This situation of overall guiding can
be modeled within the two-level type susceptibility (13),(14) implied by (6)-(9) choosing a positive
sign of �.

A typical example of the L-I characteristics that follow from the numerical integration of (6)-
(9) for a circular contact VCSEL is shown in Figure 5 (Mart��n-Regalado et al., 1997a). These
results correspond to a contact diameter of 10 �m and cavity anisotropy parameters p = 3:0e and
a = �5:0e. Given the frequency dependence of the gain and the positive detuning (� > 0), the
ŷ-polarized mode has a larger material gain and it would be selected at threshold for a = 0. A cavity
gain/loss anisotropy (a < 0) has been introduced to overcome the material gain anisotropy induced
by birefringence. In this way the total net gain for the x̂{polarized mode is higher than that for the
ŷ{polarized mode and x̂-polarized emission is selected at threshold. The frequency splitting between
the two polarization modes of the fundamental transverse mode is �� �5.6 GHz, as calculated from
Eqs.(22),(25). This situation corresponds then to the one considered in Figure 4 of selection of the
x̂{polarized mode at threshold and low birefringence (p < s=2�).

Figure 5 shows that the VCSEL switches-on in the x̂-polarized TEM00 mode, because of the
e�ect of the cavity anisotropy. For increasing current, an x̂ ! ŷ polarization switching is observed
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Figure 6: Optical spectra of the linearly polarized �eld components Ex (solid) and Ey (dashed) for the �xed current
values indicated in Figure 5 by arrows: (a) I = 1:29Ith, (b) I = 1:67Ith, (c) I = 1:87Ith, (d) I = 2:26Ith.

at I � 1:45Ith, while the mode pro�le does not change. The switching current depends on the
value of a, (i.e. for a = �2:5e switching occurs at I � 1:30Ith). For I � 1:7Ith a �rst order
transverse mode starts lasing. This mode is orthogonally polarized to the fundamental one. During
the multitransverse mode regime (I > 1:7Ith), the x̂-polarized total power increases almost linearly,
while the ŷ-polarized total power saturates. For wider VCSELs with the same parameter values,
the range of values of injection current in which the fundamental mode dominates is smaller. In
some case switching is then not observed because of the early emergence of higher order transverse
modes. The polarization and transverse mode competition obtained here reproduces the general
phenomenology discussed in section 1.

The modal behavior of the VCSEL emission can be obtained by integrating (6)-(9) at a �xed
current value instead of using a current ramp, as was done in Figure 5. Figure 6 shows the optical
spectra and the transverse mode pro�les obtained at four di�erent injection current values. These
spectra are equivalent to those obtained by a Fabry-Perot interferometer with a free spectral range
of 1000 GHz and a frequency resolution of 2 GHz. At I � 1:29Ith, the polarized spectrum in Figure
6a shows that the laser mainly emits in the x̂-TEM00 mode. However, the orthogonal polarization
shows a strongly suppressed peak (�-40 dB). Beyond the switching current, at I � 1:67Ith, laser
emission occurs in the ŷ-polarized Gaussian mode (Figure 6b). For increasing current, I � 1:87Ith,
two transverse modes, the TEM00 (�) and the TEM10 (�), coexist, but with di�erent polarizations
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(Figure 6c).
Figure 6d shows the spectrum at I � 2:26Ith. Several transverse modes are active in each

polarization. It is remarkable that the two linear polarizations choose to operate in modes of di�erent
parity. Even order modes are ŷ-polarized (a dominant TEM00 mode (�), and some strongly suppressed
second order modes (� and �)), while x̂-polarized modes have odd order pro�les (TEM10 (�) and
TEM01 () modes). Contrary to the cases shown in Figure 6a-c, where the total intensity emitted in
each polarization is constant in time, the output of the laser oscillates in time for the injection current
of Figure 6d. The total x̂-polarized power is modulated at twice the beat note of the x̂-polarized
�rst-order transverse modes (� 17 GHz). Periodic modulation at twice the beat frequency is also
observed in the total ŷ-polarized power but, in this case, as a consequence of the nonlinear coupling
between the two linearly polarized �eld components and the total carrier population.

It is interesting to consider the sensitivity of the dynamics just described to the value of the
spin ip rate parameter s to see the e�ect of the mixing of the carrier populations with di�erent
spin numbers. For a spin-ip relaxation rate ten times faster (s = 500e) than the one considered
above, the dynamics turns out to be polarization independent. Polarization stability is observed in
the fundamental mode regime. In addition, transverse modes start lasing with the same polarization
that the fundamental mode and they appear at a much larger current I � 2:25Ith. These features
indicate that the selection of a particular transverse mode does not only depend on the modal gain
when the spin-ip dynamics is not too fast and that physical mechanisms associated with the spin-ip
relaxation rate are crucial in determining the transverse and polarization properties of gain-guided
VCSELs.

5 Optically Pumped VCSELs

So far electrically pumped VCSELs have been implicitly considered. From the point of view of the
scheme with two two-level systems of Figure 1b, this implies assuming that the two transitions are
pumped with equal strength. Pumping the VCSEL optically with an o�-resonance �eld allows to favor
selectively one of the two lasing transitions by changing the ellipticity of the pump. When the pump
is not linearly polarized, pumping creates a nonzero macroscopic magnetizationmz � n by producing
carriers with a preferred spin orientation. In this way the spin dynamics is unmasked and its e�ects
become more apparent. Optically pumped VCSELS are thus very useful for fundamental studies of
polarization selection mechanisms and other more general properties of VCSEL dynamics. Note also
that the optical pump avoids, to a large extent, temperature e�ects (mostly due to selfheating) that
complicate the interpretation of experimental results. From a more practical point of view, optical
pumping can be useful to obtain self-sustained polarization oscillations, thanks to a more e�ective
coupling of the two lasing transitions associated with right and left circularly polarized light.

For a VCSEL operating in the fundamental transverse mode the e�ect of optical pump is taken
into account (Gahl et al., 1998) replacing Eqs.(17)-(18) by

dN

dt
= �e(N � (�+ + ��))� e(N + n)jE+j2 � e(N � n)jE�j2 (30)

dn

dt
= e(�+ � ��)� sn� e(N + n)jE+j2 + e(N � n)jE�j2 (31)

where �+ (��) is the optical pump of the E+(E�) �eld component, so that the pump ellipticity is
given by P = (�+ � ��)=(�+ + ��). Information on the carrier and spin dynamics is then obtained
by studying the ellipticity of the output laser light as a function of P . An additional way of probing
spin dynamics is introducing a magnetic �eld Bx in the direction transverse to that of light emission
(Voigt geometry). The magnetization associated with n is then subject to Larmor precession, which
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Figure 7: Time series of the polarization resolved intensities (full curve: I+ = jE+j2, dotted curve: I
�

= jE
�

j2),
the total intensity I+ + I

�

(dashed curve), the magnetization component mz = n and the corresponding �eld spectra
(full curve: E+, dotted curve: E

�

); parameters: � = �+ + �
�

= 3, P = 0:9, e = 1ns�1, �=e = 250, p=� = 12GHz,
a=p = 0:01, � = 3, s= = 150.

yields another coupling of the two spin sublevels of the conduction band. The theoretical description
of this situation requires the consideration of an additional coupled variable which represent the
magnetization along the transverse direction perpendicular to the magnetic �eld. This variable also
represents the quantum coherence between the two electron spin sublevels of Figure 1b, under the
assumption of very fast hole spin relaxation.

From a fundamental point of view, consideration of an optically pumped VCSEL in a transverse
magnetic �eld can be used to determine the spin ip rate s by measuring the laser light ellipticity as
a function of magnetic �eld strength for a circularly polarized pump, P = 1 (Hanle e�ect). It follows
from the model considered here that the ellipticity, normalized to the zero magnetic �eld ellipticity,
is a Lorentzian whose width scales as Bx=s, with no other adjustable parameters (Gahl et al., 1998).
This model also gives a good description of light oscillations at the Larmor frequency which have
been observed in a VCSEL pumped with a pulse of 2 psec of elliptically polarized light in a trans-
verse magnetic �eld of 2 Tesla (Hallstein et al., 1997). Such studies, in which the nonlinear regime
above the laser threshold is considered, parallel fundamental studies of spin relaxation properties
in semiconductor materials with no optical cavity (Kikkawa et al., 1997; Kikkawa and Awschalom,
1998). In the latter stuides one is in fact considering a linear regime below a laser threshold.
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It is rather natural to expect polarization oscillations if the SFM model is considered from a
dynamical systems point of view. Each of the two two-level systems in Figure 1b is a nonlinear
oscillator and they are coupled through carrier dynamics (spin ip and eventually a transverse mag-
netic �eld) and through the optical �elds by birefringence. The coupled system has several natural
frequencies (relaxation oscillations, birefrigence frequency splitting, Larmor oscillations in magnetic
�eld) of comparable magnitude (from a few to tens of GHz). Nonlinear coupling among the two
subsystems can produce the unstabilization of any of these oscillations by means of harmonic or beat
note excitation, thus leading to self-sustained oscillations in the polarization of the emitted light
under continuous pump. As an example, Figure 7 shows self-sustained polarization oscillations at a
frequency dictated by birefringence as obtained from the numerical integration of Eqs.(16),(30),(31)
for a pump with an ellipticity close to being circularly polarized. The oscillations occur for a value
of the birefringence which is comparable with the di�erence between the natural frequencies of the
two lasing transitions which is created by the �-factor when the laser operates at n 6= 0. Oscillations
disappear for birefringences much larger or smaller than this value.

Polarization oscillations and other dynamical states can also occur, as previously mentioned,
under electrical pump. However, optical pump is much more versatile and permits to obtain these
states under a much broader range of situations and for easily attainable values of the physical
parameters of the VCSEL.

6 Beyond a two-level susceptibility

The discussion in sections 3-5 considers a model based on a two-level type susceptibility (12)-(14),
where � appears as a detuning. This model has allowed to obtain a good number of results within
a relatively easy description. However, there are important di�erences between a two-level type
susceptbility � and the typical one of a semiconductor quantum well laser. Such di�erences modify
the frequency dependent dynamics when several transverse modes come into play, and also in the
case of operation in the fundamental transverse mode. The origin of these di�erences is that a
semiconductor can be regarded as a collection of two-level transitions, each one for each transverse
wavenumber in the semiconductor band structure. Summation over these transverse wavenumbers
leads to the di�erences shown schematically in Figure 8, where gain� �Im� and index � Re�.

One important di�erence is the relation between the detuning and the guiding e�ects of the
carriers. In the two level susceptibility the gain curve is symmetric and the frequency of maximum
gain does not change with carrier injection. The nonlinear contribution to the index of refraction
vanishes at the frequency of maximum gain and the change of index of refraction with carrier number
depends on the sign of the detuning: For a positive detuning (� > 0) the index increases with carrier
number (carrier guiding) while for negative detuning it decreases (carrier antiguiding). On the
contrary, in a semiconductor the gain curve is not symmetric and the frequency of maximum gain
shifts with carrier number. Grossly speaking, the index grows monotonically with frequency in the
frequency range of positive gain. In this range the index decreases with increasing carrier number for
any sign of the detuning. Such antiguiding e�ect corresponds to a negative value of the parameter
� as de�ned in (15). The consequence is that the intrinsic anitiguiding e�ect of a semiconductor
is independent of detuning, while within a two level model guiding or antiguiding are dictated by
detuning.

In section 4 it was argued that there is an overall guiding e�ect in the VCSEL due to ther-
mal lensing. This was taken into account choosing a positive detuning (� > 0). In addition, in the
derivation of Eqs.(16)-(18), which have been used to describe operation in the fundamental transverse
mode, the frequency dependence of gain and index was eliminated. To overcome the shortcomings
of this description there are two main alternatives. A �rst one is to introduce a full many body
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Figure 8: Schematic plot of the frequency dependence of the complex susceptibility for a two level model and
a semiconductor. Dashed and continuous lines correspond to two di�erent values of the carrier number density
(pumping level), being the carrier density number smaller for the dashed line. The vertical line indicates the frequency
of maximum gain and � indicates detuning with respect to this frequency.

description of the semiconductor dynamics (Chow et al., 1994). This gives a correct fundamental
description in which di�erent e�ects are incorporated, but at the cost of high conceptual and com-
putational complexity. For a broad range of situations a second viable and practical alternative
is to extract from those microscopic theories the e�ects that have important consequences and to
introduce them, through an approximated susceptibility, in a macroscopic description which still has
the conceptual simplicity of a two-level system. An example of this type of approach is based on
an approximated calculation of the susceptibility of a quantum well (Balle, 1998). This is a low
temperature and quasiequilibrium calculation which only considers the conduction and heavy-hole
bands within a parabolic approximation. It also assumes charge neutrality and the summation over
transverse wavenumbers is over the �rst Brillouin zone. The result can be written, for each of the
two transitions associated with the two circularly polarized components of light, as

�� (!�; D�) = ��0

"
ln

 
1� 2D�

u� + i

!
+ ln

 
1� D+ +D�

u� + i

!
� ln

 
1� b

u� + i

!#
(32)

where

u� =
!�
?

+�+ �(D+ +D�)
1=3; � =

� � !g
?

(33)

and b gives the background refraction index. D� have the same meaning as discussed after Eq.(9), !�
are the frequencies of the two transitions and the detuning � formally coincides with � in (10). Band-
gap renormalization e�ects have been additionally included in this expression for the susceptibility
through the term proportional to � in the de�nition of u�. This term describes the known functional
dependence of band-gap shrinkage with carrier number and � is a free parameter of the model. This
form of the susceptibility accounts very well for the general features described in connection with
Figure 8. The de�nition (15) gives now a frequency dependent �-factor. Its value at the frequency
of maximum gain has the correct known dependence with carrier number (Balle, 1998).
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Figure 9: Approximated parabolic dependence of the threshold current as a function of the detuning � as predicted
by (35)-(35). � is a function of temperature T . Vertical lines indicate the polarization state selected as the injection
current I is raised at constant detuning. Dashed (solid) lines correspond to a ŷ (x̂ )linearly polarized state. The
arrows indicate two possible paths for polarization switchings as explained in the text.

An additional important point of (32) is that a main thermal e�ect can be easily taken into
account by letting the detuning parameter � to depend on temperature. Indeed, it was mentioned
in section 1 that heating of the device changes the relative position of the resonant cavity frequency
and the frequency of maximum gain. This can be described by changing � as temperature or injection
current rise.

The SFM model can now be written using the susceptibility (32) and the relation (12) in (3),
together with Eqs.(8)-(9) for the carriers. For operation in the fundamental transverse mode, so that
di�raction and carrier di�usion are neglected, the equations for the �elds F� and carrier populations
D� of the two transitions in Figure 1b can be written as,

_F� = ��F� + ia�� (!�; D�)F� � (a + ip)F� (34)

_D� = I � eD� � j (D� �D�) +
2�0
�h
Im [�� (!�; D�)] jF�j2 (35)

where I is the injected current. A proper description of frequency dependent dynamics is obtained
solving (35)-(35) imposing selfconsistently that !� = �i _E�=E�.

A schematic summary of the results that follow from this model and negligeable values of a is
given in Figure 9. There is a minimum threshold current for a detuning value � = �m. The selected
state at threshold is the one that has larger material gain, which is di�erent for � > �m and for
� < �m due to the frequency splitting of the two polarization modes caused by birefringence. If
polarization selection were just a question of relative gain the selected state would be the same for
all values of injected current and a �xed value of �. A temperature induced switching (Choquette
et al., 1995b) would occur because the sign of ���m changes as the pump increases. However, what
is predicted is that for a �xed value of � there is a switching for a particular value of the injection
current if � < �m, while no switching occurs for � > �m. This situation corresponds to the analysis
of Figures 3 and 4 for p > s=(2�). The preference for a particular polarization at threshold was
obtained in Figures 3 and 4 by the sign of a. Here it is a consequence of the frequency dependence
of the gain curve.

The physical mechanisms of polarization switching at constant � in Figure 9 are the ones pre-
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viously discussed and associated with phase-amplitude coupling and spin dynamics. However, in
reality polarization switching does not occur at constant � unless the laser is pumped with electrical
pulses shorter than the thermal relaxation time. In general, increasing the injection current leads to
a temperature rise, and � increases with temperature, so that the path followed in the parameter
space I;� is the one indicated by the arrows in Figure 9. Polarization switching occurs when the
border line between the two domains of polarization selection, indicated by solid and dashed lines,
is crossed. In the generic situation of the upper arrow switching occurs for a detuning � < �m and
it leads from the mode of higher linear gain to the one of lower linear gain for that value of �. For
the special case of the lower arrow, polarization switching happens to occur at �m, as it is predicted
for a polarization switching which were just the result of a thermal e�ect.
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