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Abstract

We show that the presence of undulated boundaries can induce the formation of spatially
chaotic, stationary, and stable structures in models as simple as the Fisher-Kolmogorov equation,
which does not display any kind of chaos under common boundaries.

1 Introduction

In the past few decades, considerable understanding of the phenomenon of temporal chaos
in dynamical systems of few degrees of freedom has been achieved[l]. On the other hand,
spatiotemporal chaos in extended dynamical systems with infinitely many degrees of freedom is
currently under very active investigation[2]. It is remarkable however, that an area of problems
laying somehow between the two extremes has not received so much attention, namely, purely
spatial chaos as a stationary attractor of extended dynamical systems [3, 4, 5, 6, 7, 8, 9].

In the context of fluid dynamics, the existence of spatially chaotic, but temporally steady
solutions would also fill a conceptual gap between two well-studied complex phenomena: La-
grangian chaos, and Eulerian chaos or turbulence. The former refers to the chaotic motion of a
fluid parcel which might occur in flows that are not necessarily chaotic in their Eulerian descrip-
tion. In fact, a laminar flow may induce chaotic motion for the fluid particles [11, 12, 13], and
in three dimensions this is even possible if the flow is steady. On the other extreme, the road to
turbulence is usually associated to a hierarchy of increasingly spatiotemporally chaotic Eulerian
velocity fields v(r). Frozen spatial chaos would then refer in this context to a third possibility:
a stationary velocity field v(r) spatially chaotic in the Euler description.

Stationary structures in extended nonlinear dynamical systems in one spatial dimension
have been considered in some detail in recent investigations, and spatial chaos found. Rigidly
travelling waves with spatial chaotic structure can also be considered as a case of spatial chaos,
since it is purely spatial in a moving frame of reference [5, 7]. Such one-dimensional systems are
specially suitable to analysis because their steady state configurations, which depend only on
the unique spatial coordinate, can be described using results of the theory of low-dimensional
dynamical systems, by simply interpreting the spatial coordinate as a fictitious time. In the cases
previously studied, spatial chaos appears because the nonlinear dynamical system ‘evolving’ in
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the space coordinate has dimensionality large enough. The high dimensionality of the equations
can be due to a) the presence of high-order spatial derivatives in a single evolution equation as
in the cases of Kuramoto-Sivashinsky[8] and Swift-Hohenberg equation [4, 9], b) the coupling of
several fields each one satisfying lower order differential equation as in the complex Ginzburg-
Landau equation[5] which supports chaotic travelling waves, or c¢) explicit space dependent
forcing terms as in the driven KdV-Burgers [10] equation.

Stationary two-dimensional spatial chaos is basically unexplored at present. In this case
application of dynamical system concepts to the analysis of steady state solutions cannot be
direct, since we have in principle two equally important spatial coordinates. In addition there is
a large variety of possible boundary conditions which surely leads to a variety of steady configu-
rations much richer than in the one-dimensional case. We will be able to show, for a extremely
simple model, that rather simple undulated strip-like domain shapes can induce the formation of
patterns that are both spatially chaotic and temporally attracting. We believe that the kind of
modulated boundaries we propose can be easily implemented in standard experimental pattern
formation set-up’s such as Faraday waves, convection cells, or open flows. In fact, our work was
originally motivated by the observation, in the fluid dynamics experimental setup of a periodic
array of pipe bents, that the transversal profile of the steady flow does not necessarily repeat
itself with the same periodicity of the array [12].

2 The model and its boundary conditions

The connection between the theory of dynamical systems and the study of stationary spatial
configurations of one-dimensional extended systems is direct: A stationary pattern satisfies a
system of ordinary differential equations with the spatial coordinate as its independent variable
which we can think of as a ‘time’.

On the contrary, the cases with two or more spatial dimensions can not be tackled along
these lines since conventional dynamical systems theory deals with a single time-variable. There
are two-dimensional situations, however, where the two independent spatial directions are nat-
urally differentiated by the geometry of the system and we can interpret one of them as playing
the role of the time. Thus, the spatial variation in one direction would be interpreted as time
evolution of a one-dimensional field that only depends on the remaining spatial coordinate.
Symmetries such as parity in a spatial coordinate will appear as time-reversal symmetry after
reinterpretation of this coordinate as a time. Particularly suited to our approach will be the
case of two-dimensional extended systems evolving in strip-shaped regions much longer (ideally
infinite) in the time-like direction than in the space-like one. If the strip is narrow enough, only
patterns composed of one or few transverse spatial modes will be allowed and spatial chaos can
be readily defined and identified in terms of the usual concepts of dynamical systems theory.

A first remark to be done about this interpretation is that any explicit dependence on the
coordinate along the strip amounts to time dependence of the corresponding dynamical system.
In particular, if the lateral boundaries of the strip are undulated, the corresponding boundary
conditions will translate into time-periodic forcing.



To focus our attention on spatial chaos induced by boundary effects, we consider a very
simple model equation containing only up to second order derivatives and a single field variable
known as the Fisher-Kolmogorov (FK) equation:

oY = V4 + ap — ¢? (1)

where (z,y,t) is a real field and V? is the two dimensional Laplacian operator. The real
coefficient a in the linear term could be scaled out, but we find convenient to keep it explicit
in the equation. The FK equation appears in several contexts ranging from phase transitions
(under the name of real Ginzburg-Landau equation, or time-dependent Ginzburg-Landau model
[14]) to population dynamics and ecology. Equation (1) has been extensively studied in one and
two dimensions.

In one dimension, for systems large enough, most initial field distributions evolve into
configurations made of domains where the field takes values near either ¥ or ¢_, where ¥4 =
+4/a. These domains are separated by kink or anti-kink-type walls that can move into each
other leading to mutual annihilation. By this mechanism, small domains disappear feeding the
growth of larger domains whose sizes then increase logarithmically in time until only one of the
stationary homogeneous solutions, ¥ or 1_, prevailing by chance, takes over the whole system.

In two dimensions, the evolution of a large system leads to coarsening of domains containing
either the ¥ or the 1)_ phases, with typical lengths growing as the square root of time[14]. In
addition to the weak wall interaction, present as before, the most important driving force for
evolution is the tendency to minimize domain wall length. Independently of the dimensional-
ity, the dynamics of (1) is a pure (non inertial) relaxation seeking a minimum of a functional
potential[15]. This implies that the asymptotic states can only be fixed points in the functional
space, and no limit cycle oscillations nor more complicated attractors can exist.

It was shown by Collet [16] in a more general context that the time evolution and asymptotic
states of Eq. (1) in either one or two dimensions are similar to those of an infinite system except
within a boundary layer of a size that depends on the a parameter. Therefore, in order to
observe the influence of boundaries on pattern evolution we need to consider a domain small
enough at least in one of its dimensions. We will consider a strip-shaped domain, elongated
in the x direction, which will be called the longitudinal direction, so that the small dimension
is the y transversal direction. To be concrete, our domain will be limited by the curves yo(x)
and vy (z), where we impose null Dirichlet conditions (that is ¢ (x, yo(x),t) = ¥(x,y1(z),t) = 0).
The choice of Dirichlet boundary conditions is just for convenience but it is not essential for our
conclusions. In the one-dimensional case, viewing the stationary solutions of Eq. (1) as orbits of
a dynamical system, we immediately rule out chaotic configurations since the dynamical system
is just an ordinary differential equation of second order. Chaos can appear, however, if some
z-dependent periodic forcing is added to the equation. This argument does not apply directly
to the two-dimensional case, but it suggests that lateral undulated boundaries (similar to a
time-periodic forcing) could induce spatially chaotic structures.

As a particular case we will study the following periodically modulated boundaries:
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Figure 1: Symmetrically oscillating channel: a = 2%; do = d1, ¢ = 0.

Here di, dy are the amplitudes of each boundary, « is the spatial frequency, which is the same
for both boundaries, and ¢ is the phase lag between both boundaries. The case di = dy
and ¢ = 0 gives a channel with symmetrically oscillating width (Fig. 1) whilst if dg = 0 one
boundary is flat. Another interesting case is di = dp and ¢ = 7 that corresponds to having
the boundaries in phase, so that the domain has a constant transversal width and undulates
along the longitudinal coordinate. Here we will concentrate on the symmetrically oscillating
channel, shown in Fig. 1. We stress that we try to remain in the simplest situation that will
display spatial chaos. Consideration of more complex models such as the Kuramoto-Sivashinsky
or the Swift-Hohenberg equations, which show spatial chaos already with simple boundaries, or
more complicated boundaries having for example two incommensurate undulation periods for
the upper and lower boundaries (corresponding to a quasi-periodic forcing) could only increase
the complexity of stationary solutions.

Boundary conditions in the longitudinal = direction remain to be specified. The analogy
with a temporal variable would be the strongest if the region were infinite in that direction, with
the only requirement of boundness of the solution. However, an infinite domain is not adequate
for the numerical studies that will follow. As a consequence we need to impose periodic boundary
conditions (of period L) along the z direction. In this way we are restricting the class of solutions
to periodic orbits of period L or less in the time-like z-coordinate. However we can still identify
as related to spatial chaos configurations that have the maximal period L, provided this period
increases as system size L increases, and the periodic orbits approach a chaotic trajectory.

A convenient way to handle the boundaries consists in mapping the region limited by yo(z)
and yi(z) (and by = 0,L) to a rectangular one: g3 = 1, Jp = 0 and x = 0,L. The map
(z,y) — (z,9) for arbitrary functions yo(x) and y;(x) transforms Eq. (1) into an equation for

Y(x, g, t) = (z,y,t) satisfying:
Onp = 02,0 + F ()05 + G(2)02;0 + H(2)0h + app — (3)

where F, G, H depend on the boundary shape g, 1.
The new transversal boundary conditions are

P(x,5=0)=vo(z) =0, P(z,§=1)=v1(z)=0 (4)



Inspection of Eq. (3) tells us that the effect of the boundaries is reflected in the new variables
as a parametric forcing.

Making the right hand side of (3) equal to zero to seek for stationary solutions, and think-
ing of x as time we can look at it as a nonlinear equation for the temporal evolution of a
one-dimensional pattern, with a ‘time’-periodic parametric forcing due to the boundaries. The
present knowledge about spatiotemporal chaos can be used to analyze such dynamics. In par-
ticular cases some simple approximations [17] can be carried out to reduce the problem to a
simpler one without explicit space dependence.

We could have also performed a conformal transformation, one which conserves the or-
thogonality of the coordinate lines. The advantage of this kind of transformations is that the
Laplacian transforms to itself in the new coordinates but with a space dependent coeflicient, i.e.
if T is a conformal transformation then T : V2 — a(z,y)V?2. Even in this representation the
main conclusion would be the same: the non-trivial boundaries affect the dynamical evolution
through parametric forcing terms.

3 Numerical Results

We have performed direct two-dimensional simulations of Eq. (1) in the domain of Fig. 1.
Periodic boundary conditions in the longitudinal direction restrict the values of the possible
values of the frequency of the boundary oscillation: « = %’rn, being n an integer.

An example of the typical behavior is shown in Fig. 3, where a two-dimensional frozen
structure is presented for parameter values d = 1.0, o = 7, a = 20, ¢ = 0. The solution consists
in the irregular alternation of two phases 11 along the ‘time-like’ longitudinal direction. Calling
‘spatially chaotic’ this irregular alternation may raise some doubts. In fact since we are using
periodic boundary conditions in the longitudinal direction the configuration shown in Fig. (3)
is periodic with the maximum period L. However, one can associate to each configuration a
sequence of 0’s and 1’s by taking values of the field at the periodicity A = %’T imposed by the
boundaries (in the same way as one would get a stroboscopic map in the case of a ’external’
periodic forcing): if 1 is positive, then one takes the value 1, if negative, 0. For example the
trajectory in Fig. (2) can be read as '11111110010110100001011’. Our claim is that whatever
sequence one could write, it is realizable in this system by only changing the initial condition.
Longer sequences would be realized in systems with larger L. This establishes the ‘spatially
chaotic’ character of the typical configurations. Other indicators such as the fractal character of
Poincaré maps will be discussed in [17]. In the limit of very large systems one could in principle
look for Lyapunov exponents and correlation integrals [9].

Our claim can be proved when the domain is a small perturbation of a rectangular one, so
that approximations leading to an evolution equation for a single spatial mode can be obtained
[17]. In the general case the following physical argument gives an heuristic justification for it:
The tendency of the system is to be in a single phase, so that a Ginzburg-Landau energy is
minimized [15]. But initial conditions lead to domains of the two phases in competition, with
domain walls between them. The tendency to minimize the free energy has two effects: On the
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Figure 2: Two-dimensional simulation of the system (1) starting from random initial conditions. The amplitude

of the field in the center of the domain is also shown. Parameter values: d = 1.0, = 7m,a =20,¢ =0

one hand the walls interact attractively and tend to annihilate by pairs. On the other hand its
length tends to be minimal, so that, in our geometry, the walls tend to stay in the places where
the distance between the upper and lower boundaries is minimal. If the distance between such
places and the amplitude of the boundary oscillations are large enough, this pinning tendency
will stop wall annihilation and stabilize configurations such as the one in Fig. 2. This seems to
be the origin of the stable disordered structures found. Other geometries, where the distance
between both boundaries varies in space, can lead to further interesting behavior.

4 Conclusions

We have shown that an undulated boundary can induce stationary, stable, longitudinally
chaotic solutions in a model as simple as the Fisher-Kolmogorov equation, which does not display
any kind of chaos under common boundary conditions. We can talk about boundary-forced or
boundary-induced structures. Spatial chaos should be present in more complex systems, and
changing the shape of the boundaries could be a useful way of controlling it.

We are investigating the possibility that these spatially chaotic structures appear in low
Reynolds-number flows. Related work on nonlinear extended dynamics influenced by boundaries
can be found in [18].
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