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The effect of a finite geometry on the two-dimensional complex Ginzburg–Landau equation is
addressed. Boundary effects induce the formation of novel states. For example, target-like
solutions appear as robust solutions under Dirichlet boundary conditions. Synchronization of
plane waves emitted by boundaries, entrainment by corner emission, and anchoring of defects
by shock lines are also reported.

1. Introduction

The complex Ginzburg–Landau equation (CGL) is
the generic model describing the slow phase and
amplitude modulations of a spatially distributed as-
sembly of coupled oscillators near its Hopf bifur-
cation [van Saarloos, 1994]. It contains much of
the typical behavior observed in spatially-extended
nonlinear systems whenever oscillations and waves
are present. After proper scaling it can be written
as:

∂tA = A − (1 + iβ)|A|2A + (1 + iα)∇2A (1)

where A is a complex field describing the modula-
tions of the oscillator field, and α and β are two
real control parameters. The first two terms in the
r.h.s. of Eq. (1) describe the local dynamics of the
oscillators: the first one is a linear instability mech-
anism leading to oscillations, and the second pro-
duces nonlinear amplitude saturation and frequency
renormalization. The last term is the spatial cou-
pling which accounts both for diffusion and disper-
sion of the oscillatory motion.

The power of our analytical tools to study non-
linear partial differential equations in general, and
the CGL equation in particular, is very limited.
Roughly speaking, only relatively simple solutions
satisfying simple boundary conditions, usually in in-
finite domains, are amenable to analysis. Examples
of these are plane and spiral waves. Nevertheless,
sustained spatiotemporally disordered regimes have
been found and thoroughly investigated numeri-
cally. Detailed phase diagrams displaying the tran-
sitions between different regimes have been charted
for the cases of one and two spatial dimensions
[Shraiman et al., 1992; Chaté, 1994; Chaté &
Manneville, 1996]. However, we want to stress
that most of these numerical studies have been per-
formed only under periodic boundary conditions,
with the underlying idea that in the limit of very
large systems the boundary conditions would not
influence the overall dynamics. As a consequence
of this belief, and despite its importance for the
description of real systems, a systematic study of
less trivial boundary conditions has been largely
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postponed. This is the case not only for the CGL
equation but also for other nonlinear extended dy-
namical systems, and only few aspects of this prob-
lem have been collaterally addressed so far [Cross
et al., 1980, 1983; Sirovich et al., 1990]. The pur-
pose of this paper is to report on the initial steps
of a program aiming towards such a systematic
study. We will focus here on the behavior of the
two-dimensional CGL equation on domains of dif-
ferent shapes and with different types of boundary
conditions (Dirichlet or Neumann, for example).

For the purpose of comparison we first sum-
marize the behavior observed numerically on two-
dimensional rectangular domains under the com-
monly used periodic boundary conditions. Let us
remind that in the so-called Benjamin–Feir (BF)
stable region of the parameter space defined by
1 + αβ > 0, there is always a plane wave solution
of arbitrarily large wavelength that is linearly sta-
ble. In particular, for parameters in that region,
and initializing the system with a homogenous con-
dition (a wave of wavenumber k = 0) it will remain
oscillating homogeneously. If we now vary the pa-
rameters slowly towards crossing the BF line, all
the plane wave loss stability and small perturba-
tions bring the system to a spatiotemporally disor-
dered cellular state (the so-called phase turbulence).
It is known that the behavior close to the BF line
can be approximated by the Kuramoto–Sivashinsky
equation.

Further change of the parameters to go deeper
inside the BF unstable region eventually leads to
the generation of defects, i.e. points where A = 0,
and a kind of turbulent evolution characterized by
the presence of these defects sets in. This is the
so-called defect or amplitude turbulence. If we now
trace back to the initial parameter values from the
state dominated by defects, the system does not re-
cover the initial uniformly oscillatory state. The
spontaneous generation of defects ceases at param-
eter values still inside the BF unstable region. At
these parameter values, the system usually reaches
a state consisting of a spiral wave whose core is a
defect. This spiral occupies most of the domain and
it is limited by the shock-lines where the arms of the
spiral meet themselves. Defects without spiral arms
appear at the crossings of such shock-lines. In this
regime, the amplitude of the field is time indepen-
dent and its phase evolves quite regularly in time.
In general, the configurations that share these two
properties are called frozen states. These states per-
sist while we vary the parameters all the way back to

the BF stable region. Starting at values correspond-
ing to a defect-dominated evolution, and suddenly
setting the parameters to values in the stable BF
regime, the stationary solution will be also a frozen
state but in this case several domains, each one con-
taining a spiral wave, may form. The size of these
domains vary with the initial conditions, but the
typical scale is controlled by the parameters. Shock
lines where the arms of different spirals collide now
proliferate and nonspiral defects are usually present
at the crossings between them.

2. Boundary Effects

Let us consider first parameter values such that
with periodic boundary conditions the long-time
asymptotic states are frozen and look at how the
behavior is modified by changing the boundary con-
ditions. We apply null Dirichlet (A = 0), and
Neumann (vanishing of the normal derivative of
A) boundary conditions. For the former, we con-
sider three different boundary shapes: square, cir-
cle, and stadium-shaped domains. Comparison be-
tween square and circle will allow us to investigate
the influence of corners. On the other hand, our
interest in the stadium arose from considerations of
ray chaos, but it will be presented here as a combi-
nation of circle and square geometries.

In the Dirichlet case, the zero amplitude bound-
aries facilitates the formation of defects near the
walls. Starting from random initial conditions, de-
fects are actively created in the early stages of the
evolution. After some time, however, all the points
on the boundaries synchronize and oscillate in phase
so that plane waves are emitted. Defect formation
ceases, and the waves emitted by the walls push
the remaining defects towards the central region of
the domain. There the defects annihilate in pairs
of opposite charge and as a result of this process a
bound state is formed by the surviving set of equal-
charge defects. The orientation of the waves emit-
ted by the boundaries also changes during the evolu-
tion. The synchronized emission of the early stages
proceeds, obviously, perpendicular to the boundary
but later the wavevector tilts to some emission an-
gle of approximately 45◦. This angle depends on
both the parameter values and the geometry of the
boundaries. The fact that this angle is not ex-
actly 45◦ is made evident by a mismatch of the
waves coming from orthogonal walls. Finally the
system reaches a frozen state of the type displayed
in Fig. 1. The defects are confined to the center
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Fig. 1. Frozen structures under null Dirichlet boundary con-
ditions in a square of size 100 × 100. Parameter values are
α = 2, β = −0.2 (a–d), and α = 2, β = −0.6 (e–h). Snap-
shots of the modulus |A| of the field are shown in the left col-
umn and snapshots of the phase in the right column. Color
scale runs from black (minimum) to white (maximum).

of the domain forming a rigid static chain. The
constant phase lines travel from the boundaries to-
wards the center of the domain. Shock lines appear
where waves from different sides of the contour col-
lide. The strongest shocks are attached perpendic-
ularly to the walls. If for a particular initial con-
dition all defects annihilate the asymptotic state is
a defect-free target solution. This kind of solutions
is not seen in simulations with periodic boundary
conditions.

It is known [Hagan, 1982] that the phase ve-
locity of the usual spiral waves in infinite systems
could point either inwards or outwards from the de-
fect core depending on the parameter values. In
our simulations in the square geometry with Dirich-
let conditions, however, the direction of the phase
velocity is always from the boundary to the core.
We can understand this better by applying null
Dirichlet conditions to only one of the walls. The
synchronized emission that we observe is a straight-
forward generalization to two-dimensions of the

one-dimensional Nozaki–Bekki emitting hole solu-
tion [Nozaki & Bekki, 1985]. We have verified
[Eqúıluz et al., 1998], for instance, that the direc-
tion of the emitted waves (inwards or outwards)
can be changed with parameters as predicted by
the analytic computations [Hagan, 1982]. However,
when several of the walls are lines of zeros (the four
sides of the square, for example) the direction of the
phase velocity becomes determined by the angle be-
tween these lines. In other words, corners effectively
entrain the whole system.

In a circular domain (Fig. 2), the frozen struc-
tures are either targets (no defects) or a single cen-
tral defect. Groups of defects of the same charge
can also form bound states, but instead of freezing
they rotate together. This contrasts with the be-
havior of the square domains and is correlated with
the absence of shock lines linking the boundaries
to the center in the case of the circular domains.
These links are probably responsible for providing
rigidity to the stationary configuration in the square
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Fig. 2. Frozen structures under null Dirichlet boundary con-
ditions in a circle (a–d) of diameter 100 for parameter values
α = 2, β = −0.2, and in a stadium (e–f) of size 200×100, for
parameter values α = 2, β = −0.6. Snapshots of the modulus
|A| are shown in the left column and (e) the phase is shown
in the right column and (f). Color scale as in Fig. 1.
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case. Tiny shock lines associated to small depar-
tures from circularity in the lines of constant phase
can be observed also in the circle but these lines end
in the bulk of the region before reaching the bound-
aries. On the other hand, the constant phase lines
reach the boundaries nearly tangentially in contrast
to what we observe in the square. In addition, we
observe that for circular domains the phase velocity
direction can be changed by controlling the parame-
ters. This is probably a consequence of the absence
of the corners that synchronize the emission from
the boundaries in the square case.

The stadium shape (Fig. 2) mixes features of
the two geometries previously studied: It has both
straight and circular borders. In this case, the
curves of constant phase arrange themselves to com-
bine the two behaviors described above. On one
hand the lines meet the straight portions of the bor-
der of the stadium with some characteristic angle,
as it happens in square domains. However, these
lines bend to become nearly tangent to the semicir-
cles in the places where they meet with these por-
tions of the boundaries. A typical frozen solution
displays a shock line connecting the centers of the
circular portions of the domain. This shock line
usually contains defects. It is also possible to find
defect-free target solutions as in the case of the cir-
cle, and the behavior of the phase velocity is also
similar in the sense that its direction can be changed
by modifying the parameters.

The behavior under Neumann boundary condi-
tions is rather similar to the case of periodic bound-
ary conditions. However, the Neumann conditions
induce several subtle features to the dynamics. For
example, shock lines are now forced to reach orthog-
onally the boundaries. In addition, defects can be
irreversibly absorbed by the boundaries, a process
that is obviously impossible with periodic bound-
ary conditions. During the evolution a spiral defect
behaves as if it were interacting with a mirror im-
age of itself with opposite charge located outside
the domain [Aranson et al., 1993]. This reflects in
few characteristic phenomena. On one hand, an
isolated defect tends to move parallel to a nearby
Neumann wall. On the other hand, mutual anni-
hilation of a defect and its image is also possible
accounting for the absorption of this defect by the
boundary. Finally, when a defect closely approaches
a corner, its evolution gains in complexity possibly
as a result of the mutual interaction with two dif-
ferent images. Figure 3 displays a typical evolu-
tion of the pattern. Initially starting at random, a
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Fig. 3. Snapshots of the field |A| (left column) and phase
(right column) in color scale as in Fig. 1 at times t = 2.5×104

(a–b), t = 5.0 × 104 (c–d), t = 7.5 × 104 (e–f), and
t = 10.0 × 104 (g–h) under Neumann boundary conditions
in a square domain of size 100 × 100. Parameter values are
α = 2, β = −0.2.

number of dynamically active spiral defects is cre-
ated. These move around eventually annihilating
mutually or sometimes being absorbed by the walls
while the dynamics progressively slows down. Nor-
mally one large spiral wave grows until it fills the
whole domain at the expense of the smaller ones
that are pushed out of the boundaries.

Finally, we have studied the changes induced
by the boundaries for parameter values such that
active spatiotemporal chaos (i.e. nonfrozen states)
is found for periodic boundary conditions. Far from
the boundaries, spatiotemporally chaotic solutions
behave similarly to those satisfying periodic bound-
ary conditions. However, a boundary layer with
different behavior shows up near the borders. In
Fig. 4 we can see plane waves emitted by the bound-
aries and rapidly fading inside the domain where
spatiotemporal chaos evolves. In small domains
the boundaries could synchronize the whole system.
However, as the system size increases, full synchro-
nization ceases.
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Fig. 4. Dynamical solutions under Dirichlet boundary con-
ditions. Snapshots of the field |A| are shown in the left col-
umn and (e) the phase is shown in the right column and (f).
(a–b): square, parameter values α = 0, β = 1.8; (c–d): circle,
parameter values α = 2, β = −1.0; (e–f): stadium, parame-
ter values α = 2, β = −0.75. System sizes and color scale as
in Figs. 1 and 2.

For other parameter values, Dirichlet boundary
conditions lead eventually to a dynamics charac-
terized by the coexistence of regions dominated by
defect turbulence and regions dominated by plane
waves (constant |A|) whose shape and position nor-
mally evolve in time. We have found this behav-
ior in all the domain shapes studied except for the
circular case.

For these parameter values, Neumann bound-
ary conditions do not produce a dynamics sensibly
different from the one induced by periodic boundary
conditions. The only noticeable difference is that
in the Neumann case the shock lines are forced,
as pointed out before, to orthogonally meet the
boundaries.

3. Conclusions

In this paper, we have presented important features
of the dynamics of the CGL equation which depend

strongly on the type of boundary conditions im-
posed, as well as on the geometrical shape of the
boundaries.

Dirichlet boundary conditions play a double
rôle. On one hand, the walls naturally behave as
sources (or sinks) of defects. On the other hand,
a wall with null Dirichlet conditions shows a ten-
dency to emit plane waves. The interplay between
these two properties of the boundaries gives rise to
interesting behavior.

In the case of frozen states, the character of the
walls as wave emitters dominates. Some geometri-
cal features of the boundaries have a strong influ-
ence on the details of the phase synchronization.
Corners, for instance, tend to act as pacemakers.
In circular domains, on the other hand, the emis-
sion is definitively dominated by the internal spi-
rals. Correspondingly, the internal structure of the
frozen states is also influenced by the shape of the
boundaries. In a square, defects form a chain which
is anchored to the boundaries by a set of shock
lines; in a circle, on the contrary, the asymptotic
state is usually a bound state disconnected from the
boundaries.

Neumann boundary conditions seem to have
a much weaker influence on the overall dynami-
cal behavior of the CGL equation. However some
differences are evident: One is the orientation of
the shock lines, perpendicular to the boundaries.
The other is that defects can be ejected through
the boundaries, thus favoring states dominated by
a single spiral in situations where under periodic
boundary conditions a glassy state with several spi-
ral domains would be formed.

Since the CGL equation appears naturally in a
variety of contexts, we believe that the phenomena
found in our preliminary explorations are likely to
be relevant in many theoretical and experimental
situations. Some of the phenomena reported here
have intrinsic interest and deserve further analysis.
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