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Abstract

Different models are considered for the study of dynamical instabilities of lasers with a transversally isotropic resonator
operating on a single longitudinal mode coupled to a homogeneously broadened J = 1 — J = 0 material transition. We devise
a model of intermediate complexity which retains the dynamics of the atomic variables and which has the experimentally
required linearly or circularly polarized steady state solutions with their relative stability near threshold depending on the
difference of certain collisionally enhanced relaxation rates. Stability analysis of these steady states in this model provides
second thresholds above which the polarization state is time dependent. The stable operation of polarized output states is
interpreted in terms of coherence induced absorption or transparency even though the population inversion exceeds the lasing
threshold on the transition which drives the orthogonally polarized field. A more general model of the field-atom dynamics
than those previously considered is also constructed and analyzed for the stability of its steady states. The fundamental
physical condition on the ratio of certain relaxation rates of previous models for stability of circular or linearly polarized
solutions is unchanged.

1. Introduction

Lasers with transversally isotropic resonators re-
quire use of the vector nature of the transverse electric
field for a full description of their stability or dynam-
ics. The behavior of such lasers clearly depends on the
angular momentum values of the two levels (which de-
termine the number and couplings of the sublevels) of
the medium in resonance with the field [ 1-3] and on
the relative decay rates of the different material vari-
ables {2-8]. In particular, for an isotropic resonator,
J — J + 1 transitions for J > 0 have been shown

to lead to stable linearly polarized emission while for
J=0-—->J=1and J =1 — J = 0 transitions
the choice of circularly polarized or linearly polarized
emission depends on the relative sizes of the popu-
lation equilibration rate and the coherence decay rate
for the active sublevels of the J = 1 state. Stable cir-
cularly polarized emission on the 1.523 um line of a
HeNe laser [9] was explained in this manner [2-8].

While some early studies noted that temporal pul-
sations in the total intensity (going beyond simple
beating between two orthogonally polarized modes)
might result in these lasers, recently there has been
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renewed interest in the nonlinear dynamics of vector
lasers beyond the range of stable polarized emission
[3,10-18] and in the possibilities of more complex
transverse pattern formation and alternation [19,20].
Among these studies, a new branch was begun by
Puccioni et al. [11] with the investigation of the im-
portance of dynamics involving the material variables.
However, the particular model used by Puccioni et
al. [11] as a modification of the Sargent, Scully and
Lamb model [21] and studied in detail by Matlin et
al. [15] does not permit the stable circularly polarized
solutions which have been observed experimentally
and explained in other models. We demonstrate how a
simple modification in their model recaptures this fea-
ture while providing a model (similar to the general
equations of Lenstra [2]) which can be used for more
complete studies of steady states, their stability, and
time-dependent solutions. While the atomic coupling
transition J = 1 — J =0 is well known to be neutral
with respect to the polarization of the two modes (hav-
ing equal self and cross saturation for pairs of modes
that are either circularly, linearly or elliptically polar-
ized) [1-3,5,9,21], collisional processes have been
found to lead to strong coupling between circularly
polarized modal amplitudes that favors circularly po-
larized emission for some lasers of this type [9]. How-
ever, a difference in the collision rates within what
seem to be a physically allowable range from con-
sideration of collision cross sections [2] would lead
to weak coupling favoring linearly polarized emission
within our generalized model. We present the results
for this model for the stability of the circularly polar-
ized steady-state solutions and the linearly polarized
steady state solutions including instabilities involving
material dynamics whch are neglected in third-order
amplitude equations of previous studies [ 1-10]. (Al-
though the model specifically applies for J =1 — J =
0 transitions, the range of parameters covers strong and
weak coupling (cross saturation) and may thus offer
hints of the effects of material dynamics on lasers with
other transitions. However, application of the dynam-
ical results from the full models considered here to
transitions with more complicated sublevel structures,
such as the J = 1 — J = 2 transitions or J =2 —
J =3 of the experiments in [1,7,9,17,18] requires a
separate analysis.) We also review the isomorphism
between representations of the Hamiltonian dynamics
for the J = 1 — J = 0 transition in terms of linearly

or circularly polarized fields and Cartesian or Zeeman
atomic states, respectively, which leads to the neutral
coupling and how this polarization state neutrality is
broken by relaxation rates. This leads us to contruct a
more general model than those used heretofore [1,2]
by including the spontaneous transitions between the
two levels. A stability analysis of this general model is
readily possible near threshold and it reveals the same
conditions on the collisional relaxation rates for sta-
bility of the circularly or linearly polarized solutions,
indicating that the ratio of the magnetic dipole and
electric quadrupole relaxation rates of the J = 1 sub-
levels is the crucial factor in determining the strong or
weak coupling.

In section 2 we show how to construct a model
of intermediate complexity that generalizes the model
studied by Puccioni et al. [11] and Matlin et al. [15].
We demonstrate how the relaxation rates govern the
selection of stable polarized states in this model as in
previously studied simpler models and we complete a
stability analysis of these steady state solutions. In sec-
tion 3 the stability of these states is reinterpreted in the
language of coherent field-matter phenomena in multi-
level systems which has previously led to the obser-
vation of such phenomena as lasing without inversion,
electromagnetically induced transparency, and inver-
sion with absorption [22-25], and a relatively new
member of this class, inversion without lasing [26].
In section 4 we review the symmetry of the represen-
tations of the dynamics in terms of either circularly
polarized fields and Zeeman basis states or linearly
polarized fields and Cartesian basis states. We then
construct a more general model of these lasers incor-
porating a full set of collisional decay rates and cou-
plings of the upper and lower level via spontaneous
emission. We discuss the relative impact of these pa-
rameters on the selection and stability of polarized
emission. In section 5 we analyze close to threshold
the general model introduced in section 4 and we show
that the fundamental condition of previous models for
stability of circularly or linearly polarized solutions is
unchanged.



FULL LENGTH ARTICLE

346 N.B. Abraham et al. / Optics Communications 117 (1995) 344-356

2. Improved J = 1 — J = 0 model of
intermediate complexity

The basic Hamiltonian dynamics fora J = 1 —
J = 0 transition does not couple the M = 0 sub-
level of the J=1 level to any other sublevel, if the
axis of quantization is taken along the direction of
propagation of the single mode field (see, for ex-
ample, Refs. [2,21]). This gives a model essentially
equivalent to the Maxwell-Bloch model for single
mode lasers with the generalization to two field ampli-
tudes (of orthogonal circularly polarized emission),
two dipole moments, two population inversions, and
an induced coherence between the radiatively active
upper sublevels. Puccioni et al. [11] added the fea-
ture that collisions might increase the decay rate of
the coherence above the minimum value given by the
spontaneous decay rate of the upper levels as assumed
by Sargent, Scully and Lamb [21] and they added
circular phase and loss anisotropies. Their model for
isotropic cavity losses and isotropic cavity detunings
reads,

dER/d[ = —kER —10FER + xPg ,

dE./dt = —kEL — i8EL, + kPL,

dPr/dt=—y Pr +y1ERDr + Y1 ELC,

dP./dt = —~y, PL +y1 ELDL + vy ErC*,

dC/dt = —y.C — (y/4) [E{ Pr + ErP{],

dDg/dt = —y(Dr — o) — (y)|/2) [ ExPr + ErPg
+ (1/2)(E{PL+ ELP"))

dDy /dt = —y| (D — &) — (7/2) [(E{PL + ELR)
+ (1/2)(ERPr + ErPR)1 , (1)

where the Eg . are the suitably rescaled slowly vary-

ing field amplitudes, Pr) are the two (rescaled and

slowly varying amplitudes of the) dipole moments

on the circularly polarized transitions, Dg | are the

rescaled differences between the populations of the

upper sublevels and the lower level, and C is the co-

herence between the upper sublevels. « is the cav-

ity decay rate for the two modes, & is the cavity de-

tuning for the two modes, and the ¥’s are the decay

rates of the associated atomic variables, where it is
assumed that the collision-induced decay rate of the

inter-sublevel coherence, y,, may be larger than the
population decay rate, 7|, just as the dipole moment
decay rate, v, may be collision broadened above the
population decay rate. As in the construction of the
two-level Maxwell-Bloch models, it is assumed for
simplicity that the decay rates of the upper and lower
levels are equal.

Since in this model y, > 7|;» it suffers from the fact
that linearly polarized states are always stable near
threshold and circularly polarized states are always
unstable near threshold, in disagreement with exper-
imental results [9] and with modifications of earlier
models to explain this effect [2-8]. The missing fea-
ture is collisional processes which may also reorient
the atoms, effectively mixing the populations of the
upper sublevels. By adding a collisional enhancement
of the decay rate of the difference of the populations
of the upper sublevels to Eqs. (1), we obtain a gen-
eralized model which recaptures the missing features
of stability of circularly polarized solutions for certain
parameter values.

dEg/dt = —«ER — i6ER + «PR,

dE /dt = —kE, —i8E + kPL,

dPr/dt = —y P + Y1 ErDr + y ELC,

dP./dt =~y PL+y1 ELDL + v ERC*,

dC/dt = —y.C — (y)|/4) [E{ Pr + ExP]'],

dD, /dt = —y|| (D, —20)
= Gy /D E[PL + ELP] + ExPr + ErPR)

dD_/dt=—y;D_ — (y)/4) [(ExPr + ErPR)
—(EfPL+ ELP])], (2)

where D, and D_ are the sum and difference, respec-
tively, of Dr and Dy .

We next consider the steady states and their stability
on resonance (8 = 0). The steady state solutions in
resonance are
(1) The off-state

C=ER=EL=PR=PL=O, DR=DL=0'.

(2)The circularly polarized states
(a) Right circular

Eg = Pp = [4y,(c — 1)/ By, +yP1'2,
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EL=P=C=0, Dr=1,
Dy =142y (e —1D/Bys+v)) -
(b) Left circular

EL=PL=[4y;(0 — 1)/Gys+yP1"%,
ER=Pr=C=0, D_=1,
Dr=1 +2Y||(0'— 1)/(371+‘Y||),

with total output power 4y,;(o — 1) /(3y; +))).
(3) The linearly polarized states

|Er| = |EL| = |Pr| = | PL|
= {2y.(0 = /By + 7P},

Dr=Dr=1+{y(c—1)/By.+y},
ICl =y (e =1 /By +y)

with total output power 4y.(o — 1) /(Byc + 7).

The phase shift between Er and Ep. (and the con-
sequent phase shifts for Pg and P and C) determines
the particular linear polarization. There is an infinity of
solutions (on a circle with the relative phase between
Er and E;, varied between 0 and 24r) of this type.

When 7y, = v, the total output power for this state
is the same as for the circularly polarized states above.
The intensity emitted by the laser in the linearly po-
larized state is greater for v, > y; while the intenstiy
emitted by the laser in the circularly polarized state is
greater for y. < ;.

For a specific example, let us take Er and Ep purely
real and positive to create the horizontally polarized
state. Then

Er=E_=Pe=PL= {2y.(0 = 1)/ Gy + N},
Dr=DL=1+{y (e = D/Gyc+7},
C=—y(c—-1)/By.+y).

A rotation of this state in the clockwise direction by
an angle /2 is accomplished by the transform Ep =
P4 = Exexp(it/2), E{ = P = Evexp(—iy/2),C’ =
Cexp(—iy).

For both the circularly polarized and linearly polar-
ized solutions, the extracted power is less than would
be obtained from two independent two-level transi-
tions each pumped by rate ¢. In that case the total
intensity would be 2(o — 1). Here instead less energy

is extracted and the population inversion left to inter-
act with the suppressed state of polarization exceeds
the usual value needed to bring a laser with a two-
level medium above the lasing threshold (D = 1).
The physics of this phenomenon is discussed further
in section 3.

There are five complex variables in the problem (C,
Es, Ps). The global phase (the sum of the phase angles
of these variables in the complex plane) is never de-
termined by the criterion of a steady state solution for
autonomous conditions, as is true for any autonomous
laser. For the linearly polarized solutions, the relative
phase between Eg and Ej, is not fixed and so there
is the larger family of solutions described previously
which is parameterized by this relative angle . And
in the case that y. = vy,, the angle which determines
the degree of ellipticity of the solutions is undeter-
mined in the steady state solution and there is an even
larger family of solutions for the variation of these
two angles. This was the condition considered in the
earliest models {1,21] from which it was predicted
that there would be neutral stability of J =1 — J =
0 lasers with respect to polarization states preferred
by the atomic processes. In contrast with single mode
lasers, lasers of this type have larger families of so-
lutions parametrized by different phase angles. These
are associated zero eigenvalues in the stability analy-
sis. Amplitude fluctuations and laser linewidhs are thus
different when the system is driven by noise [27-31].
These effects are enhanced when there is also neutral
stability for the degree of ellipticity of the solutions.

Stability analysis

The circularly polarized states are stable in reso-
nance just above the lasing threshold (except for neu-
tral stability of the phase of the emitted field) if y; >
v. and for values of the pump parameter between
threshold and a critical value ¢ —circutar given by

20k + Dy +14+7vc)
k(y) +x+1)

O er—circular = |

At this critical value there is a double Hopf bifurcation
involving the onset of the orthogonally polarized field
at a shifted optical frequency. The frequency shift, {2,
in the vicinity of the instability threshold is given by
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P _K(YJ_YC)(UC_l)O-C
c—circular —

20+ xk+1)

Although there are no oscillations of the total intensity
at the instability threshold because the perturbation in-
volves the addition of an orthogonally polarized field,
above the threshold nonlinear coupling causes inten-
sity oscillations to develop at twice this frequency.

The linearly polarized states are stable (except for
neutral stability of the phase of the emitted field and
neutral stability of the orientation of polarization of
the emitted field) if yv; < vy. and for values of the
pump parameter between threshold and a critical value
O cr—linear given by

(k+1+y)(c+ 1)y,3vc + )
MI2K2 + 26 + ye(k —ys — 1)]

O er—linear = 1

This instability involves a modulation of the ellipticity
at a frequency

2 _ 2xy(o = D(ye —vs)
i T By +y )k +ys+ 1)

which to lowest order does not cause a modulation of
the total intensity. The orientation of the linear polar-
ization is neutrally stable, indicating that it is free to
diffuse. A second pair of complex conjugate eigen-
values of the stability analysis of the linearly polar-
ized steady state appears for even higher values of the
pump parameter if 2« > 7., and they correspond to
a phase instability of the linearly polarized solution.
However, except for the unique case of y. =y, =y,
where the pump value for the instability of this sec-
ond pair of complex conjugate eigenvalues coalesces
with the first, these eigenvalues do not affect the basic
stability of the steady state solution. However, the rel-
atively large modulation instabilities that appear well
above the instability threshold clearly involve phase
instabilities (frequency shifts and frequency modula-
tion) which are perhaps heralded by these other eigen-
values.

3. No lasing despite inversion above threshold
The stability of a specific polarized state of emis-

sion is intuitively surprising since in each case the sat-
urated inversion exceeds that needed to bring single

mode emission above the lasing threshold on the tran-
sition for the suppressed field. In the case of circularly
polarized fields, in the zone of stability the result in-
dicates that all perturbations are suppressed, and this
corresponds to attenuation of weak probe fields of any
polarization. This differs, from other forms of bista-
bility between two single mode solutions in a mul-
timode model such as discussed in [21]. Bistability
and hysteresis in the crossover from one mode to an-
other is observed in third-order Lamb theory models
of orthogonally polarized fields in a Vector laser. Un-
like third-order Lamb theory where the only possi-
ble statement is that the operation of one mode sup-
presses the gain of the other below threshold, here
we can distinguish different contributions to the sat-
urated gain of the suppressed transition. Specifically,
because we retain the dynamics of the populations,
dipole moments, and coherences, we can see that even
in the presence of one single mode solution, the inver-
sion for the other transition remains above threshold.
When the dipole moment that provides gain for a mode
arises only from the interaction of a field perturbation
with the inversion, then having one mode stable re-
quires that the suppressed transition have its inversion
suppressed below threshold. What we observe here is
somewhat like the mode competition and bistability
observed in multi-longitudinal-mode Maxwell-Bloch
equations [31] where a detuned mode can suppress
the operation of another mode that would be less de-
tuned, although there one cannot identify distinct in-
versions for the modes (longitudinal modes of differ-
ent frequencies) since they interact with the same ho-
mogeneously broadened atoms. Here by contrast there
is a distinct inversion for each of the two modes. Al-
though there is inversion in excess of threshold (D >
1 in these units) for the suppressed transition, the ab-
sorption from the induced coherence C reduces the
amplification on the suppressed transition to less than
1, so that the cavity losses exceed the net gain. There
remains net amplification, just less than that needed to
sustain lasing. This phenomenon is a reminder that the
source term for the electromagnetic field is the dipole
moment density and for multilevel systems interlevel
coherences contribute to the value of this term. This
effect joins the general class of multi-level coherence
effects such as lasing without inversion [22,23], elec-
tromagnetically induced transparency [23,24] and in-
version with absorption [25]. No lasing despite inver-



FULL LENGTH ARTICLE

N.B. Abraham et al. / Optics Communications 117 (1995) 344-356 349

sion above threshold was also observed recently in a
model for J = 1 — J =0 far infrared lasers for which
the upper level was pumped coherently by an intense,
linearly-polarized laser field [26]. By contrast, our
case appears as a spontaneously organized process for
an incoherently pumped upper level.

We illustrate the origin of this phenomenon by con-
sidering the dynamics of the perturbation of the right
circularly polarized solution (writing lower case vari-
ables for the perturbations that lead to the instability
above the second threshold):

dEg/dt = —kEr + PR,
dey/dt = —ker + xpL,
dPr/dt = —y1 Pr + YLErDr + yLeLC,
dpL/dt=—yipL+yieLDL+ yLErC"
de/dt = —yce — (y)/4) leLPr + Erp(] »
dD, /dt = —y (D4 — 20)
— (3y) /4 lefpL + eLp{ + ExPr + ErFR ],
dD_/dt = —y,;D_ — (|/4) [(ExPR + ErFR)
— (efpL+eLp))]. (3)

Taking adiabatic elimination of the material vari-
ables, we have

c=—(y|/4yc) le[ Pr + Erp(]

and

pL = eLDy + Egc”
= eLDL — (7)) /4ve) [eLErP§ + | Eg|*pL],
SO

_eL[DL — (7)/47:) ErFR]
PL 1+ (y)/4ve) | Er|?

which leads to

s

dev

= — + K
dr ke PL

Dy — (7||/47c)ERP1i">
1+ (y)/4ye) | Er|?

This shows explicitly that the gain for ¢ may be
less than that provided by the saturated population in-
version Dy alone. The reduction comes from the co-
herence ¢ created by the radiating field Er and dipole

= —Key + KeL<

moment Pg. Neglecting ¢ amounts to taking . to in-
finity, in which case the gain for ¢y, is simply as pro-
vided by Dy, alone.

The small signal net gain for the circularly polar-
ized field that is off (eL) is provided by the term
k({...} — 1) which can be rewritten using the steady
state solutions for the variables as

k({2(ye — vy (e - D]

-1 = )
«({-3=D YeBys+y) +yyyi(o—1)

(4)

The net gain for the left circularly polarized field that
is initially off is positive if v, > vy, and this net gain is
negative if y. < ;. That is, a circularly polarized so-
lution is stable with respect to the perturbation of the
other circularly polarized field if y, < ¥, even though
the population inversion on the suppressed transition
provides more gain than the cavity losses. This is be-
cause the absorption resulting from the interlevel co-
herence is strong enough in this case to reduce the
overall gain from the medium to less than the cavity
losses.

4. Constructing a more general model

The rather ad hoc method of creating Eqs. (2)
from Egs. (1) suggests that it may be useful to revisit
the derivation of such models, the most systematic of
which is that of Lenstra [2]. In completing this deriva-
tion, we note the symmetry of two representations for
the Hamiltonian portion of the dynamics, the break-
ing of that symmetry by the dissipation rates, the in-
consistency of ignoring the contribution of the M =0
sublevel of the upper level to the dynamics, and a pre-
viously overlooked coupling between this level and
the lower level.

We consider a transition between an upper level
with J = 1 and a lower level with J = 0 in the absence
of a magnetic field so that the magnetic sublevels of
the J = 1 level are degenerate in energy. Taking the
quantization axis of the upper level along the direc-
tion of the field propagation (in a unidirectional ring
cavity) the dipole interaction couples the levels as fol-
lows. Right circularly polarized fields drive the transi-
tion between the M = 1 sublevel of the upper level and
the lower level, while left circularly polarized fields
drive the transition between the M = —1 upper sub-
level and the lower level as indicated schematically in
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Fig. 1. Schematic diagram of the fields interacting with atomic
sublevels. (a) Circularly polarized field amplitudes and Zeeman
basis states. (b) Linearly polarized field amplitudes and Cartesian
basis states.

Fig. 1a. The M = O sublevel of the upper state is not
coupled to any of the other level by the electric dipole
Hamiltonian.

A comprehensive analysis of a model of this sys-
tem was undertaken by Lenstra, albeit with certain re-
strictions on the full generality of the dissipative rates
and with a limitation of his stability analysis of the
lasing steady states to near threshold conditions that
could be described by third-order (Lamb) equations
for orthogonally polarized fields. While this analysis
gives the stability or instability relative to selection
of linearly, circularly, or elliptically polarized states
near threshold, it does not permit an analysis of the
equations for a further bifurcation (loss of stability)
at higher pump rates such as we completed for Eqs.
(2) in the previous sections.

5. Two representations of the interaction
Hamiltonian

The interaction Hamiltonian in the basis of the four
atomic states {|J, M)} ={|1,—1),|1,0), |1,+1),]0,0)
= |b)} is given by

gEy 0 gE; 0O

where Eg and E are the left and right circularly po-
larized components, respectively, of the electric field
amplitude and g is a coupling constant incorporating
the dipole matrix element of the transitions.

However, if we change the basis states for the
density matrix representation by taking orthogo-
nal contributions of the states |1,—1) and |1,1),
namely [1,x) = (|1,=1) +[1,1))/v/2 and |1,y) =
i(|1,—1) — |1,1))/v2 , so that the four basis states
are |1,x),]1,0),|1,y) and |b), the interaction Hamil-
tonian takes on an equivalently simple form

0 0 0 gE
000 0
XY _
Hine = 0 0 0 gE |°

gE; 0 gE; 0

where E; and E, are the components of the electric
field amplitude polarized in the x and y-directions, re-
spectively, given by E, = (Er + EL)/v/2 and E, =
i(Er — EL)/ V2. The pictorial coupling of these lev-
els by the field is shown in Fig. 1b. Note that the full
symmetry of these two expressions (and figures) for
linear and circular states and field amplitudes also re-
sultsfor /=0 — J=1and J=1 — J = 1 transitions
[33]. For higher angular momentum values the Cleb-
sch Gordan coefficients give different strengths to the
different transitions and having more than two active
sublevels prevents the definition of |x) and |y) states.

6. Effects of damping and excitation

In adding damping rates to these equations, we have
the following physical phenomena to include: spon-
taneous decay from each level including the fact that
some of the spontaneous emission from the upper level
involves transitions to the lower level, isotropic colli-
sional enhancement of the decays of the off-diagonal
elements of the density matrix (dipole moments and
coherence terms) which may differ, and collisional
redistribution of the upper state sublevel populations.
One may not simply write different decay rates for
each of the elements of the atomic density matrix un-
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der the assumption of isotropic collisions, since rota-
tion of the coordinate system transforms certain ele-
ments into combinations of others. One can, however,
separate the elements of the upper state density matrix
into groupings of different tensorial order which trans-
form into other members of the group. For the lower
level there is only the scalar population. For the up-
per sublevels there is a scalar (the total population),
a vector (involving the population difference of the
radiatively active sublevels, which is sometimes re-
ferred to as the magnetic dipole of the system), and a
rank-two tensor (involving the off diagonal coherence
between the radiatively active sublevels and the pop-
ulation difference between the |[M| = 1 sublevels and
the M = 0 sublevel, sometimes referred to as the elec-
tric quadrupole of the system) (see e.g., Ref. [2]).
The assumption is made that the isotropic nature of
the collisions is unaffected by the presence of the las-
ing field or by the dipole and quadrupole moments
and coherences created by this field. For weak fields
near threshold, no experimental evidence has been ob-
served of a breaking of this isotropy.

We illustrate these limitations as follows. Let
Ni.1, N1p and N; _; be the populations of the three
upper state sublevels. We define N,, N_ and Q, the
population contributions to the different tensorial
orders, as follows:

Na=Ni 1+ N+ Ny -1,
N_=Ny1— Ny -1,
O=Ni1+ N1 —2Np.

The contributions of decays, which may be different
for different tensorial orders, require

dN,/dt = —y,N,,
dN_/dt= —‘)’JN_ s
dQ/dt = ““)’CQ »

where 7, is the decay rate of the interlevel coherence
(called C in the previous section), 7y, is the sponta-
neous decay rate of the upper level which we assume is
not collisionally enhanced (characteristic of electronic
transitions in atomic gas lasers), and y; = v, +7v/ and
Ye = Ya + Y., where the primes denote the collisional
contributions.

Including these decay rates and a sublevel indepen-
dent incoherent excitation mechanism (R) the non-
Hamiltonian part of the equations for the populations
of the different sublevels and of the other atomic vari-
ables may be written as follows:
dNi,1/dt = —yaNii + R —yi (Niy— Ni<1) /2

— Y (N1 —2N1g+ N1 1) /6,
dNio/dt = —yaNipo+ R
+ 2y (N1 —2Nig+ N1,-1)/3,
dNy _y/dt = —yaNy -1 + R— v, (Ny—1 — N1 1) /2
— Y (N11 —2N19o+ Ny —1)/6,
dNp/dt = —ypNp + Yan(N11 + Ny -1 + Nip),
dPrr/dt = —[(Ya+w)/2+ ¥ 1PrL,
dC/dt =—(va+7.)C, (5
where y,p is the portion of the upper level spontaneous
decay rate which is directed to the lower level and 7y,
is the decay rate of the lower level population which
we assume is not collisionally enhanced. y, and 7,
appear in the minimum decay rates (in the absence of
collisions) for C and the Ps since these are formed
from spontaneously decaying amplitudes. v/ is the

collisionally induced rate of decay (dephasing) of the
transition dipole moments.

7. General model for circularly polarized fields
and Zeeman basis states

Incorporating the dissipation and excitation rates
and the Hamiltonian dynamics into a model for the
evolution of the system, we obtain the following equa-
tions:

dEg/dt = —kEg — i6Eg + kPy ,
dE,,/dt = —kE, — i8EL + kP,
dPr/dt=—y PR +y1Er(D11 — Dv) + v ELC,
dP./dt = —y  PL+v1EL(Di_) — Dy) +y1 ErC",
dC/dt = —y.C — (va/4) [ E} Px + ExP}'],
dD,/dt = —y,D, + 3v,0

— (va/4) (ERPr + ErPg + E{PL + ELP)) ,
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dQp/dt = —y.Qp — v:0p

— (¥a/4) (ExPr + ERPg + E{ PL+ ELP]) ,
dD_/dt=—y,D_ —v¥,D_

— (¥a/4) [ExPr + ErPg — (E[PL+ ELP)],
dDy/dt = —yoDy + YD,

+ (va/9) (E{PL+ ELP] + ExPr + ErPR), (6)

where the Es and Ps are variables rescaled as in the
previous model for the slowly varying amplitudes of
the circularly polarized components of the electric
fields and the atomic dipole moment densities, Ds and
Qp are the suitably rescaled combinations of the pop-
ulation densities of the various sublevels correspond-
ing to the Ns and Q defined in Eqs. (4) and (5), C is
the rescaled coherence, and o is the rescaled pump pa-
rameter. We have also used the definitiony, = (y, +
¥)/2 + ¥/, . These equations differ in structure from
those of Lenstra [2] in the presence of the y,, term in
the evolution of Dy, which represents spontaneous de-
cay of population into the lower level. Anisotropies in
the losses or detunings (so-called amplitude or phase
anisotropies) can be easily added to these equations in
the manner discussed elsewhere [2,11,15]. Because
the cavity loss rate is used in renormalizing the field
variables more is involved in such an addition than
simply changing the terms in the field equations. In
addition, anisotropies in « or & in one basis (linear or
circular) cause mixing of the fields in the other basis.

Representation of the equations in the Cartesian basis

The equations can be rewritten in terms of the sim-
ilarly rescaled slowly varying amplitudes of the lin-
early polarized fields E, and E, using Eg = (E; F
iEy) /2. Rewriting the atomic variables in terms of
equivalent expressions for the amplitudes of the states
|1,x) and |1, y) defined previously, we find
D= (D1,1 + D|‘_|)/2 +Re(C,

Diy=(Diy+ Dy —1)/2—ReC,
P.=(PL+PR)/V2,

Py =i(PL— PR)/V2,
Cyy=—i(D1)—Dy,-1)/2—-1ImC,

which implies
—ImC =ReC,,,

where Ds are the populations of the specified upper
sublevel, Ps are the dipole moments between the spec-
ified upper state sublevel and the lower state, and Cyy
involves the product of the amplitude of the |1, x) state
and the complex conjugate of the amplitude of the
|1, y), state in complete analogy with the definition of
C for the amplitudes of the upper state Zeeman sub-
levels involved in the transition. As a consequence we
have as equations for these variables:

dE,/dt = —kE, — i6P; + kP, ,

dE,/dt = —kE, — i6P, + kP, ,

dPy/dt = —y1 Py + ¥ Ex(Dix ~ Dy) + ¥ L E,Cyy,
dP,V/dt = —Y-LP}' + ‘yLEy(Dly —Dy) + '}’J_EXC:},,
dC"y/dt = _7JCX}' - (‘yé - YIJ)RCCx)'

— (Ya/0) | E}Px + EP] 1,
dD\,y/dt = —ycD) x + Yao + (¥./3) (D1« + D1

+ Dl‘y) - (7a/4)(E;Px + EXP;),
dDo/dt = —yaDi o + va0

+(v/3)(D1x—2D1o+ Dy) ,
le,y/dt = _')’ch,y + Va0 + (7;/3) (Dl,y + Dy

+ Dl,x) - (Ya/4)(E;RV + E}‘P;‘) ’
dDy/dt = —y,Dp + yan (D1 x4+ D1y + D1 o)

+ (Ya/ O (EJPy + EyP) + ExPc + ExP}).  (7)
Py(Py) is not only driven by E,(E,) but also by
E,(E;). This is a consequence of the atomic sub-
level basis of the couplings ( which give the coherence
term C) and provides the most distinctive difference
in these realistic models from the “isotropic oscillator”
model used, for example, by Siegman [34] and Gil
[19].If one is working with a reduced set of equations
(by adiabatic elimination of the material variables),
these differences lead to different couplings of the or-
thogonally polarized field amplitudes through differ-
ent cross saturation terms and different ranges for the
parameters.

The equations for the variables using the states |x)
and |y) and linearly polarized fields have the same
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structure as those for the Zeeman basis states and the
circularly polarized fields with the interchange of the
roles of the decay rates ¥, and vy, in the dissipation
of the upper level coherence and the population dif-
ference of the radiatively active upper sublevels. We
show in the next section that the difference of these
rates governs the stability near threshold of the circu-
larly polarized and linearly polarized solutions with
respect to amplitude perturbations of the orthogonally
polarized field, as is true for the model of Egs. (2)
and in prior models [2-8]. Hence if the circularly po-
larized solutions are stable (unstable) with respect to
amplitude instabilities because of the ratio of these de-
cay rates, the linearly polarized solutions are unstable
(stable).

8. Recovering Egs. (2) from the more general
model

Eqgs. (2) can be obtained from the more general set
of Egs. (6) by taking ¥, = 0 and y,, = 0 which is the
only way to fully decouple the variable D o from the
dynamics in the presence of dissipation. These steps
have several consequences.

(i) The inference from the Hamiltonian that the
[1,0) level is decoupled from the dynamics is incon-
sistent with the requirements of isotropic collisions
which give the same rate to the mixing of this level
with the radiatively coupled sublevels (which is ig-
nored in Egs. (1) and (2)) as to the decay of the co-
herence (which is included in those same equations).
In addition the conditions y, = y, and ¥ = 0, which
are required if one is to deal only with population
differences between the upper and lower states rather
than the populations themselves, and y, = O require
that y¢ = ¥a.

(ii) For these parameter values there can only
be stable circularly polarized solutions near thresh-
old (except for elliptically polarized solutions when
Ya = ¥ = vs). The whole result is rather unphysical
if collisional effects are included in nonzero values of
¥}, and ¥/, while y{ = 0. In addition, 4 is usually of
order 7y, and this requires that y, > 37, if there is to
be any inversion at all.

However, one can recover the structure of Eqs.(2)
if one takes several less severe approximations. Rather
than “ignoring” D) o, one can assume it adiabatically

follows the dynamics which may be slower than the
7. rate for its relaxation. Solving for D gives the
expression

Dio=[3va0 +¥.(D11 + D1 -1)1/(3ya +2v.),

which can be substituted into the equations for D 4,
and D, , or Dy ; and D, _;. For example,

dDy 1 /dt = —y,D
+ 3720 [ (va+7.)/ Brya + 270 ]
— ¥ (D1a—Dy—1)/2
— (7:/6) (D11 + D1 -1) [3ya/ Bya +2¥0) ]
— (va/4) (ExPr + ErPy).

The result is a higher pump rate for the radiatively
coupled levels (by a factor of up to 3/2 if y, << y})
and reduced dependence on the sum of the upper level
populations (approaching zero if y, << y.). Makinga
variant of the further approximation that is commonly
made to reduce a two-level system to the structure of
the Bloch equations (namely that the lower level pop-
ulation decay rate is equal to one half the decay rate
of the sum of the populations of the radiatively active
levels) and ignoring the spontaneous transitions that
carry population from the upper states to the lower
states by setting yap = 0 (the most difficult to justify of
these assumptions, though one also made by Lenstra
[2]), the equations are given as follows for the renor-
malized variables describing the Zeeman atomic states
and the amplitudes of the circularly polarized fields:

dEr/dt = —xEg — i6ER + kPR,

dE/dt = —kEp —i8EL + kP,

dPp/dt=—y PR +yLErDr + YL ELC,

dP /dt = -y, PL+y1ELDL + v1 ERC™,

dC/dt = —y.C — (va/ [E[Pr + ErP[],

dD. /dt = —y (D, — 207)
— (3ya/4) [E{PL + ELP + ExPr + ErPg],

dD_/dt = —y;D_ — (¥a/4) [(ExPr + ErPy)
— (EfPL+ ELP)],

Dgr, Dy, D, and D_ have the same meanings as
in Egs. (2); ¥)/(= ¥al3(va + 72)/(Byva + 27)1) is
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the decay rate of the population inversions modified
by the correction factor from the adiabatic elimina-
tion of Dj . One further rescaling of Es and Ps by
(Y)1/7a) 172 brings these equations to the form of the
modified model of Section 2. In reaching this set of
equations by adiabatic elimination of D; o we find the
same terms (the same structure of the equations in
terms of couplings of the variables) as in the model
of Section 2, though with rescaled variables and coef-
ficients and with different accessible limits for the pa-
rameters. Because the modified | is bigger than y,,
it is possible in systems with low collision rates for y,
and 7y, to be less than || which opens several previ-
ously not considered parts of the parameter space to
exploration for potentially physically observable be-
havior. However, since in most laser systems y, >>
va and yap # 0, it is more reasonable to explore the
complete set of equations for novel forms of possible
observable behavior.

9. Reduction of the general model to third-order
Lamb theory

The analysis of our general model close to threshold
gives a further justification for Eq. (2), since the es-
sential stability features of linear versus circularly po-
larized solutions are shown to be well described by the
model introduced in section 2. In addition, this analy-
sis identifies the role of the dissipative rate y,,, which
was not included in the general analysis of Lenstra
[2] close to threshold.

A third-order Lamb theory valid close to threshold
is obtained by adiabatic elimination of the material
variables in Eqgs. (6). We first eliminate the variables
associated with population of the different sublevels
obtaining:

Dy —Dy=(2D,+3D_+Q)/6— Dy
=o' — {[a+ (¥a/7s) 1(ERPr + ErFR)
~[a~ (va/y) I(E{PL+ ELP)}/8,

Di._y—Dy=(12D,—3D_+Q)/6— Dy
=o' — [(a— (¥a/¥s)) (EgPr + ErPg)
—(a+ (va/Y))(E{PL+ ELP})1/8,

where

o' =o(1 = 3ya/)
a= [2+('Ya'}’c)]/3+2(7a-7ab)/')’b-

When & = 0, the coherence C and dipole polarizations
can be further adiabatically eliminated easily because
there is a common phase for Er and Pgr and also a
common phase for E_ and P. The usual third order
expansion yields the following set of reduced equa-
tions for the field amplitudes:

dEg/dt = (¢' — 1) Ex — BI|Er|* + y|ELI*| Er ,
dE /dt = (o' — 1) EL — BL|ELI* + y|Er|*1 EL,

where time has been rescaled with the inverse cavity
lifetime «, and the self and cross-saturation parameters
are given by

B=(/Mla+ (va/y)],
y =14 [2va(yvs —¥) [vsvel/la+ (va/yD)] -

For this reduced model circularly polarized solutions
with either Egr = 0 or Ep = 0, are stable for y > 1,
while linearly polarized solutions are stable fory < 1,
and elliptically polarized solutions occur for y = 1.

The spontaneous decay of the population into the
lower level, as taken into account by 7y, implies the
existence of a higher effective threshold ¢’ = 1. This is
a small modification since typically y» >> ¥a > Yab.
In addition, for a these values of parameters, it is clear
that & > 0 and the crossover from linearly to circularly
polarized light occurs for y,; = ., independent of 4.

A third-order Lamb theory of Egs. (2) yields the
same form of reduced equations with o’ replaced by
g, va replaced by y|| and a = 3. As a consequence,
our more general model and the one in section 2 dif-
fer in a small shift of the threshold value due to the
nonvanishing 7y, but have the same stability bound-
ary between circular and linearly polarized light.

10. Summary and conclusions

We have demonstrated how a more approximate
model [11] for the combined dynamics of material
variables, intensity and polarization state in lasers with
isotropic cavities interacting with media withJ =1 —
J = 0 transitions can be generalized by keeping im-
portant effects discussed in Ref. [2] and by adding
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the full effects of spontaneous emission transitions be-
tween the two lasing levels as well. We have shown
that this general model can be used to explore these
complex dynamics in both what are called “weak cou-
pling” and “strong coupling” limits (by adjustments
of the decay rates of different tensorial orders of the
J = 1 sublevel density matrix), thereby providing an
opportunity to go beyond the limitations imposed by
third-order Lamb theory models. While similar mod-
els were constructed previously (see Ref. [2] for an
example and a detailed review), their prompt reduc-
tion to third-order Lamb theory models for coupled
mode amplitudes prevented the study of more com-
plex dynamics made possible by the evolution of the
material variables. We have also illustrated the neu-
trality of the coupling of the polarized modes by the
J =1 — J = 0 atomic transition by explicitly con-
structing a Cartesian basis pair of sublevels of the J =
1 state which are radiatively coupled to the lower level
by linearly polarized fields.

As in previously analyzed models [2-9], near the
lasing threshold the stability of circularly or linearly
polarized solutions is determined by whether the ratio
of the decay rates of the magnetic dipole and the elec-
tric quadrupole (coherence) of the sublevels of the
J =1 level is greater or less than unity, respectively.

We have also found the thresholds for instabili-
ties which may cause pulsations of the total intensity
and/or the ellipticity (such as were found by Puc-
cioni et al. in their model [11] which we have gen-
eralized) involving the dynamics of the material vari-
ables. These instabilities are neglected in models of
only coupled field amplitudes, such as those models
which use third-order Lamb theory, because of the crit-
ical involvement of the material variables. Thresholds
for these instabilities may be relatively close to the
lasing threshold and they exist regardless of whether
it is the linearly polarized or circularly polarized so-
lutions which are stable just above the lasing thresh-
old. With the growing interest in material dynamics
as part of polarization dynamics in various lasers, our
result provides several models for some of those stud-
ies. We have also shown that the approximate model
of Puccioni et al. has substantial qualitative similarity
to our more general model so that detailed analyses
of it are likely to provide generic insight for dynamics
that may be observed for J =1 — J = 0 lasers (and
perhaps for lasers with other transitions for which ma-

terial dynamics are important).

We have discussed how polarization state selection
in a laser is determined by quantum coherences. Ex-
plicit consideration of such coherences permits iden-
tification of the physics of “no lasing in spite of in-
version above threshold”. This provides a second ex-
ample (after Ref. [26]) in which lasing in multilevel
systems involves the coherence phenomena associated
with lasing without inversion, electromagnetically in-
duced transparency, and inversion with absorption.
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