Stretching structures in the ocean surface: Transport and biological impacts

IFISC

EMILIO HERNÁNDEZ-GARCÍA Institute for Cross-Disciplinary Physics and Complex Systems (IFISC) CSIC-UIB, Palma de Mallorca, Spain

> with C. López, I. Hernández-Carrasco, J. Bettencourt V. Rossi, V. Garçon, J. Sudre, E. Tew Kai, ...

http://ifisc.uib-csic.es - Mallorca - Spain

OUTLINE

- Introduction: Dynamical systems and fluid transport
- Finite-size Lyapunov exponents in the ocean
- Impact of coherent flow structures on
 - Phytoplankton
 - Frigatebirds
- Towards three dimensions

Introduction: Dynamical systems and fluid transport

The dynamical systems approach to fluid transport

IFISC

Chaotic seas, KAM tori, ...

 $\frac{d\mathbf{x}(t)}{dt} = \mathbf{v}(\mathbf{x}(t), t)$

-10

Figure 2.7: KAM tori and elliptic islands visualized by fluorescent dye in an experiment with a steady three-dimensional flow in a viscous fluid (from Fountain et al. (1998)).

0.5

0.0

1.0

Introduction: Dynamical systems and fluid transport

- Lagrangian dynamical system: particle trajectories in a given velocity field.
- Incompresibility: symplectic structure,
- Phase space = physical space
- Global behavior in phase space is organized by some relevant lines

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{v}(\mathbf{x}(t), t)$$

Introduction: Dynamical systems and fluid transport

WHAT ARE THE RELEVANT STRUCTURES ALLOWING UNDERSTANDING OF THE WHOLE FLOW?

Trajectories of twodimensional steady or periodic flows are organized by the fixed points, or periodic orbits of the dynamical system

 $\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{v}(\mathbf{x}(t))$

If hyperbolic: Stable and unstable manifolds → separatrices Tracers tend to approach unstable manifolds

Is there any particular subset of hyperbolic trajectories and manifolds organizing the dynamics (the equivalent to the fixed points in autonomous systems)? How to select them among this mess? LCS

Identifying the relevant trajectories and manifolds in timeaperiodic dynamical systems

- Leaking, escape, or residence time methods
- Attracting or repelling material lines
- Distinguished hyperbolic trajectories and their manifolds
- Stretching-field methods: Finite-time Lyapunov exponents, Finite-size Lyapunov exponents, M function, ...
- ✓ Variational approach to hyperbolic LCSs (Haller)
- Topological braiding (Thiffeault)
- Dimensions and ergodicity measures (Rypina)
- ✓ …

$$\lambda(t) = \lim_{\| \delta(0)\| \to 0} \frac{1}{t} \ln \frac{\| \delta(t) \|}{\| \delta(0) \|}$$
 Finite-time Lyapunov exponent

$$\lambda = \lim_{t \to \infty} \lambda(t)$$
 Lyapunov exponent

$$x \pm \frac{\delta_0/2}{\sqrt{t=0}} t = \tau$$

$$\lambda(\delta_0, \delta_f) \equiv \frac{1}{\tau} \log \frac{\delta_f}{\delta_0}$$
 Finite-size Lyapunov exponent
FSLE
All the quantities are also functions $\lambda(\mathbf{x}, t, \delta_0, \delta_f)$

FSLE for small enough scales, ↔ **FTLE** for large enough times

Forward in time: repelling manifolds Backward in time: attracting manifolds

LAGRANGIAN COHERENT STRUCTURES

Any advantage in using FSLE to locate LCS?

In oceanographic contexts it is usually straightforward to identify the relevant spatial scales: Rossby radius, coastal features

Characterizing transport with FSLEs

The idea is that initial conditions close to the stable manifold of a hyperbolic trajectory or set will show strong divergence: high FSLE

Other types of Lyapunov exponents would display similar information, but FSLE is less affected by saturation The unstable manifold of hyperbolic sets would be marked by high FSLE in the time backwards direction

REMARK: these are heuristic consideration. Theorems needed (some available for FTLE)

IFISC

40N

39.5N

39N

38.5N

38N

37.5N

37N

FSLE in the Mediterranean

0.6

0.5

0.4

0.3

The strongest lines are seen to organize tracer flow

d'Ovidio, Fernández, Hernández-García, López, Geophysical Research Letters **31**, L17203 (1-4) (2004).

OUTLINE

- Introduction: Dynamical systems and fluid transport
- Finite-size Lyapunov exponents in the ocean
- Impact of coherent flow structures on
 - Phytoplankton
 - Frigatebirds
- Towards three dimensions

Biology and Lyapunov

Describing biological process with Lyapunov eyes ...

Chlorophyll-a (\approx phytoplankton) from space

MODIS Image 1 month average

SATELLITE ALTIMETRY FROM TOPEX/POSEIDON, ERS-2,

JASON, ENVISAT, ...

Dynamic Topography (DT)= Sea Surface Heigh (SSH) – Geoid (G)

SSH \approx 3 cm G \approx meters ...

Sea Level Anomalies (SLA) = SSH - $\langle SSH \rangle_t = DT - \langle DT \rangle_t$

Dynamic topography determines, via the Colioris force, the velocity field (at large scales, geostrophic approximation)

Ageostrophic components Can be estimated from scatterometer data

(Surface roughness \rightarrow wind \rightarrow Eckman component)

Tracer distributions and FSLEs

Sea Surface Temperature vs lines of FSLE > 0.1 day⁻¹ (LCSs)

d'Ovidio et al. Deep-Sea Res. I (2009)

Chlorophyill

18 May 1998

http://ifisc.uib.es

- Negative correlation
- Clustering
- Less turbulent systems
 are characterized by:
 LOW FSLE / HIGH
 CHLOROPHYLL.
- Most turbulent systems: HIGH FSLE / LOW CHLOROPHYLL.

Opposite to behavior seen in less enriched systems

IFISC

FSLE and phytoplankton

Temporal averages of vertical velocities from incompressibility condition $\Delta(x, y, t) \equiv \partial_z V_z = -(\partial_x V_x + \partial_y V_y)$

• Dominance of (small) upwelling vertical velocities in the less turbulent subsystem.

• Thus, probably the influence of horizontal stirring on plankton is only indirect: need to understand the 3d flow structure: high FSLE associated to low Eckman transport.

Rossi et al., Geophys, Res. Lett. 2008, Nonlin. Proc. Geophys. 2009

- Lagrangian Coherent Structures give the skeleton of horizontal transport
- This certainly influences abiotic quantities: temperature, nutrients, ...
- This certainly influences plankton distribution
- From there, impact is expected in plankton consumers, their predators, ... cascades up along the food chain ...

Do birds know about FSLE calculations?

Tew Kai, Rossi, Sudre, Weimerskirch, Lopez, Hernandez-Garcia, Marsac, Garçon, PNAS 106, 8245 (2009)

FRIGATEBIRDS in the MOZAMBIQUE CHANNEL

Particular topography (channel/islands) linked with strong mesoscale activity:

- Large anticyclonic cell at the north
- Local upwellings
- Anticyclonic and cyclonic mesoscale eddies moving southward permanently.

(De Ruijter et al., 2004)

Great frigatebird (fregata minor):

Large seabirds (light weight < 5 kg and large wings > 2m). Use thermals to soar before gliding over long distances and time (days/nights over weeks).

- Traveling at high altitudes to locate patches of prey and come close to surface to feed (reduced flight speed indicates foraging).
- Feeding occurs only during daytime (peaks in the morning and evening).
- Unable to dive or rest on the water surface (permeable plumage) \rightarrow in association with subsurface predators (tuna, ...): **fisheries indicators**

The Lagrangian FSLE gives access to submesoscale structures

We identify Lagrangian Coherent Structures with |FSLE| > 0.1 day⁻¹

Satellite transmitter and altimeter (total weight : 1 to 3% mass of adults, max 45g) 8 birds (from Europa Island community) fitted with satellite transmitter and altimeter.

Followed for their foraging trips from August 18 to September 30, 2003.

1600 Argos from 50 trips positions, distributed into 17 long trips (> 614 km) and 33 short trips.

(Weimerskirch et al., 2004

Overlay Finite Size Lyapunov Exponent -1500 long trips

Overlay Finite Size Lyapunov Exponent -1508 long trips

Overlay Finite Size Lyapunov Exponent -1512 long trips

Overlay Finite Size Lyapunov Exponent -1516 long trips

Overlay Finite Size Lyapunov Exponent -1520 long trips

Overlay Finite Size Lyapunov Exponent -1524 long trips

Overlay Finite Size Lyapunov Exponent -1528 long trips

Overlay Finite Size Lyapunov Exponent -1532 long trips

Overlay Finite Size Lyapunov Exponent -1548 long trips

Frigatebirds and FSLE IFISC Week of September 24, 2003 Backward FSLE=Attractive LCSs Forward FSLE = Repelling LCSs 36°E 44°E 36°E 38°E 40°E 42°E 38°E 40°E 44°E 18°S 18°S 20°S 20°S Latitude degree Lstitude degree 22°S 24°S 24°S 22°S 20 40 19°S 23°S 26°S 26°S 20 20°S 40 24°S30' 38°E 30' 39°E 30' 40°E 30' 21°S 22°S 0.05 0.25 0.15 0.2 0.1 41°E 42°E 43°E 44° 40°E 0 Day⁻¹ foraging patch (flight speed lower than 10 km/h) seabird trajectory

Histograms of FSLE values

ALCS: attracting LCS, i.e. FSLE (backwards) < - 0.1 day⁻¹ RLCS: repelling LCS, i.e. FSLE (forwards) > 0.1 day⁻¹ NLCS: not LCS (small FSLE)

Despite LCS occupy only 25% of space, 63% of bird's positions are on them

Table 1. Absolute frequency of seabird positions on LCSs and on no Lagrangian structures for long and short trips per week and result of the G-test for goodness of fit

Week	All trips		Long trips		Short trips		
	LCSs: FSLE > 0.1 day-1	$ FSLE < 0.1 \text{ day}^{-1}$	LCSs: FSLE > 0.1 day-1	$ FSLE < 0.1 \text{ day}^{-1}$	LCSs: FSLE > 0.1 day-1	FSLE < 0.1 day-1	
1	38	9	19	7	19	2	
2	78	40	55	12	23	28	
4	208	85	147	54	61	31	STATISTICAL
5	167	109	137	84	30	25	OTATIONICAL
6	120	77	89	51	31	26	TESTS
7	79	55	72	32	7	23	
8	53	34	53	34	_	_	
9	61	59	61	59	_	_	
10	55	31	45	24	10	7	
14	35	12	35	12	_	_	
15	10	5	10	5	_	_	
%	63.7	36.3	65.9	34.1	56.0	44.0	
G-test (le	og-likelihood ratio)						
n	1420	1420		1097		323	
k	11	11		11		7	
df	10	10		10		6	
G	28.119	28.119		30.613		32.057	
Р	0.001	0.00173		0.001		0.000	

One-tailed tests. Null hypothesis Ho: Seabird positions share equally LCSs ($|FSLE| > 0.1 \text{ day}^{-1}$ and on no LCSs. $\alpha = 5\%$.

Table S2. Result of G-test statistics for comparison between frequency of bird positions on repelling or attracting LCS during flying and foraging and short and long trips

Variable	Flying	Foraging		
Long trips				
Repelling LCS (FSLE > 0.1 day ⁻¹)	318	50		
Attracting LCS (FSLE<-0.1 day ⁻¹)	333	37		
n	73	8		
G		2.29		
P	0.13021			
Short trips				
Repelling LCS (FSLE > 0.1 day-1)	76	9		
Attracting LCS (FSLE<-0.1 day-1)	112	10		
n	20)7		
G		0.34		
P	0.55993			

Two-tailed tests. Null hypothesis Ho: seabirds share out equally on repelling and attracting structures when they fly or forage. $\alpha = 5\%$.

Results of statistical tests:

- Frigate birds fly on top of LCSs both for travelling as for foraging
- No significant difference between day and night positions
- No significant difference between come and return trip

Frigatebirds 'follow' LCSs not only to find there prey, but as biological corridors which bring them to foraging places

Aggregation of prey on LCSs? or aggregation of subsurface predators? Olfatory clues (DMS produced by zooplankton) ? thermal air currents?

Tew Kai et al. PNAS (2009)

Puzzling issue: no significant difference between attracting and repelling LCSs (c.f. talk by Shane Ross)

- Tangencies between manifolds?
- Interleaving between them?
- 3d dynamics associated both to ALCS and RLCS?
- Do they simply avoid low FSLE regions?

http://ifisc.uib-csic.es

- Biological processes in oceans are impacted by fluid flow at all trophic levels, from primary producers to top predators
- Lagrangian Coherent Structures are a convenient way to analyze these interactions
- Tridimensional effects need to be addressed in more detail

http://ifisc.uib-csic.es/publications

http://ifisc.uib-csic.es/research/research_fluid.php