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Abstract. We address the problem of multiresolution module detection in dense

weighted networks, where the modular structure is encoded in the weights rather

than topology. We discuss a weighted version of the q-state Potts method, which

was originally introduced by Reichardt and Bornholdt. This weighted method can be

directly applied to dense networks. We discuss the dependence of the resolution of

the method on its tuning parameter and network properties, using sparse and dense

weighted networks with built-in modules as example cases. Finally, we apply the

method to data on stock price correlations, and show that the resulting modules

correspond well to known structural properties of this correlation network.
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1. Introduction

During the recent years, the network approach has proven to be a very efficient way

for investigating a wide range of complex systems [1, 2, 3, 4]. In this approach, the

fundamental elements of the system are represented with nodes and the interactions

between them with links. Sometimes it is enough to consider links as ”binary”, such

that each link either exists or not. In this case, it is assumed that the pure topology

carries enough relevant information about the system under study. However, valuable

information is often lost if interaction strengths are not taken into account. Because

of this, the study of weighted networks has recently been receiving a lot of attention.

In this framework, a scalar weight representing the associated interaction strength is

assigned to each link. It is evident that this additional degree of freedom somewhat

complicates the picture, for example generalization of existing measures is not necessarily

straightforward (see, e.g., [5]). Thus there is a need for developing new network analysis

methods which focus on the weights instead of pure topology.

The study of (weighted) networks has mostly focused on systems whose interaction

structure is inherently sparse, such as air transport networks [6, 7] or social networks

inferred from electronic communication records [8, 9]. Another approach is to filter

out interactions which are considered insignificantly weak, resulting in sparse network

representations even for systems where each element interacts with each other, i.e.,

systems whose ”natural” representation is a full or dense weighted network. For such

networks, it is the interaction strengths themselves that carry the most significant

information – the networks are constructed on the basis of the assumption that the

strongest interactions encode the most significant properties for the system under study.

This is the case for instance with correlation-based networks, in which the weights are

usually related to correlations between the time series of some relevant activities of the

nodes (see, e.g., [10]), or distance-based networks [11], in which the weights are related

to distances between the nodes according to some relevant metric. It is evident that in

this approach setting the proper threshold below which interactions are discarded is a

non-trivial task.

In addition to weighted networks, the attention of network science has recently

been focusing on ”mesoscopic” properties of networks, i.e., structures beyond the scale

of single nodes or their immediate neighborhoods. A very important and related

problem is the detection and study of modules or communities‡, i.e., groups of nodes

with dense internal connections and sparse connections to the rest of the network

[12, 13, 14, 15, 16, 17]. A number of methods have been introduced, mostly in the

context of binary networks. These include various modularity optimization methods

building on the work by Newman and Girvan [12], and the clique percolation method

by Palla et al. [13]. Many methods have been generalized to deal with weighted networks

[18, 19, 20, 21]; however, e.g. for the clique percolation method, networks have to be

(relatively) sparse in order for the method to be applicable. Regarding the modularity

‡ In this paper, these two terms will be used interchangeably.
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optimization family of methods, it has been shown that there is an intrinsic resolution

limit [18, 22, 23]. However, a lot of attention has recently been given to multiresolution

methods [15, 19, 21, 23, 24], which allow investigating modular structure at various

levels of coarse-graining.

In this work we concentrate on investigating modular structure in dense weighted

networks, using a weighted version of the q-state Potts method by Reichardt and

Bornholdt (RB) [15]. Although originally introduced in the context of sparse, binary

networks, this method can straightforwardly be extended to the weighted case. In

addition, this extension does not require the networks to be sparse – hence, as an

example, when studying stock market correlations, all correlation matrix elements can

be taken into account and no thresholding is necessary. This method is also chosen due to

it having a simple physical interpretation, to having been used with promising results in

the analysis of binary networks [15, 23, 24], and to containing a parameter which allows

tuning its resolution. We begin by discussing the generalization of the RB method

to weighted networks and by investigating its resolution for networks with modular

structure encoded in the weights. Then, we apply it to a correlation-based network of

stock return time series, i.e., a full correlation matrix, whose modular structure has

been earlier investigated using a wide variety of approaches (see, e.g., [10, 25, 26, 27]).

It should be noted here that the multiresolution method recently introduced by Arenas

et al. [19] bears some similarity with the Potts method (see [23]); thus for comparison

we apply it to the same data. Finally, we draw conclusions.

2. The RB method

2.1. Introduction

Let us begin with a short introduction of the community detection method introduced

by Reichardt and Bornholdt (RB) [15, 24]. In this method, each node is assigned to

exactly one module, and the module indices of nodes are considered as spins of a q-state

Potts model. The goal is to assign nodes to modules in such a way that the energy of

the system is minimized. In the global optimum, groups of nodes with dense internal

connections should end up having parallel spins. The Hamiltonian for the system is

defined as:

Hu = −
∑

m

(lmm − γ[lmm]pij
), (1)

where lmm is the number of links inside module m, [lmm]pij
is the expected number of

links inside module m given the null model pij , and γ > 0 is an adjustable parameter.

The summation is over all modules. The null model pij denotes the probability that

a link would exist between nodes i and j if the network was entirely random, i.e, in

the absence of modular structure. Essentially, there are two possible choices for the

null model: constant pij = p, which corresponds to Erdös-Renyi networks [28], and the

configuration model [3], in which the degree sequence of the original network is retained
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but all links are randomly rewired, such that all correlations are lost to the extent

allowed by the degree sequence.

Next we briefly review the derivation of [lmm]pij
for the configuration model.

Imagine that all the links in the network are cut in half, such that nodes have stubs

(i.e., half-links) connected to them. Then these stubs are to be randomly reconnected

to form full links. If two such stubs are randomly picked, the probability that both

connect to nodes in module m is simply K2

m/K2, where K is the degree sum of the

network§ and Km the degree sum of nodes in module m. Since there are K/2 pairs of

stubs, we get

[lmm] =
K2

m

2K
. (2)

Correspondingly, the probability that the two stubs to be connected belong to different

modules, say m and n, is 2KmKn/K
2. Thus, the expected number of links between

modules m and n reads

[lmn] =
KmKn

K
. (3)

Let us now move on to weighted networks and present a generalization of the RB

method. It seems natural that equation (1) transforms to

Hw = −
∑

m

(wmm − γ[wmm]pij
), (4)

where wmm and [wmm]pij
denote the sum of weights and expected sum of weights of

links inside module m, respectively. Again, there are essentially two ways to define

[wmm]pij
. The approach taken in [18] is to calculate the expected number of links

using the configuration model and to assume that each link has average weight, that

is, [wmm] = 〈w〉[lmm]. However, here we take another approach, which is analogous to

the above derivation for the unweighted case and based on the ideas presented in [29].

In weighted networks, the strength si of node i is defined as the sum of the weights of

the links attached to it. Consider dividing the strength of each node in small ”stubs”

of weight ds such that node i has si/ds stubs emerging from it and start randomly

connecting pairs of these stubs. This process is analogous to the above unweighted case,

and as a result the expected sums of weights of the links inside module m and between

modules m and n are

[wmm] =
S2

m

2S
, and [wmn] =

SmSn

S
, (5)

respectively, where S =
∑N

i=1
si is the strength sum of the network and Sq the strength

sum of module q. When all links have weight wij = 1, the above equations reduce to

equations (2) and (3).

2.2. Resolution of the weighted RB method for sparse and dense networks

The RB method can be viewed as a general framework for community detection [24],

which for the unweighted case includes the modularity optimization method as a special

§ The degree sum of the network is defined by K =
∑N

i=1
ki, where ki is the degree of node i.
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Figure 1. a) A ring-like network, consisting of Nb cliques, each containing of Nc nodes.

Link weights wi within modules equal unity, whereas modules are joined by links of

weight wb ≤ 1. b) The weighted RB method can merge consecutive cliques to larger

modules, depending on values of the network parameters and the tuning parameter γ.

The hierarchical structure is for illustrative purposes only. In general, the RB method

does not yield hierarchical modules.

case (γ = 1 and configuration model as the null model). Recently, it was shown that the

resolution of modularity optimization methods is intrinsically limited [22]. In particular,

in large networks small ”physical” communities cannot be resolved and thus there is a

lower limit to the size of communities which can be detected by the method. This limit

depends on the number of links in the network and is also inherited by the more general

RB method [18]. However, by changing the parameter γ, the resolution of the method

can be tuned such that small values yield large modules and vice versa. This provides

a clear advantage over ”traditional” modularity optimization, which is restricted to a

single resolution.

We now address the issue of resolution of the weighted RB method, beginning with

a weighted modular network which is sparse, that is, whose average degree 〈k〉 ≪ N .

Consider a simple case, where the N nodes are arranged into modules of constant size

Nc, so that the number of such modules is Nb = N/Nc. Let the modules form a ring-

like structure, as illustrated in Fig. 1, and let each module be a fully connected clique.

Let the internal links within cliques have weight wi = 1, and successive modules be

connected by a single link of weight wb, where wb ≤ 1. This presents perhaps the

simplest possible modular structure for a weighted connected network.

The community structure found by the weighted RB method corresponds to the

global minimum of the Hamiltonian (or energy) defined in Eq. (4). Depending of the

network parameters Nb, Nc, and wb as well as the tuning parameter γ, this structure

may or may not correspond to the built-in modules. Let us consider two ways to group

the built-in modules into communities: the first one is the ”natural” grouping in which

each built-in module is identified as a single community. In the second case, we take

two successive built-in modules and consider them merged, that is, identified as one

community. Other built-in modules are still considered as separate communities exactly
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as in the first case. Clearly, if the second grouping has smaller energy (4) than the first

one, the resolution of the method is limited. A straightforward calculation shows that

this is equal to the requirement

wmn > γ[wmn] = γ
SmSn

S
(6)

where m and n are the built-in modules to be merged, S =
∑N

i=1
si is again the

strength sum of the network, and Sq the strength sum of module q. Now, wmn = wb,

Sm = Sn = Nc(Nc − 1) + 2wb, and S = NbSm. Plugging these into Eq. (6) yields the

merging condition for the example network:

wb > γ
1

Nb

(N2

c − Nc + 2wb). (7)

Now, let the network size N increase while the module size Nc remains constant.

Then, as Nb = N/Nc increases, larger and larger values of γ are needed for obtaining

the built-in modules. Increasing wb makes merging easier, as expected. For wb = 1,

Eq. (7) yields the resolution limit for the similar unweighted network studied in [18].

Figure 2. Left: A network consisting of Nb = 4 blocks each having Nc = 10 nodes.

Links inside blocks have weight wi = 1 and nodes in different blocks are connected

with links of weight wb = 0.1. On the right is illustrated the effect of γ on the found

modular structure. Large values yield the physical communities while for small values

the communities appear as one large module. If the number of blocks Nb is large

enough, the networks size does not affect the γ values where merging happens.
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Let us now move on to a more interesting case where the network in question is

fully connected, i.e., links exist between each node, and the modular structure is purely

encoded in the weights. Perhaps the simplest possible structure for a fully connected

network with modules is the case where Nb modules each consisting of Nc nodes are

constructed such that inside the modules the links have weight wi = 1 and links between

nodes in different modules have weight wb (0 < wb ≤ 1), see Fig. 2. Similarly to the

above analysis for the sparse weighted network, we again consider two ways to group

the built-in modules to communities: the ”natural” grouping and the one in which

two built-in modules are considered as a single module. Again, the method prefers the

second grouping over the natural one if it yields smaller energy (Eq. (4)). The condition

for this is again given by Eq. (6),but now we have wmn = N2

c wb and Sq = Ncsi, where

si = Nc − 1+ (Nb − 1)Ncwb denotes the (constant) strength of the nodes. Thus, Eq. (6)

is equivalent to

N2

c wb > γN2

c

[

1 − 1

Nc

Nb

+ (1 −
1

Nb

)wb

]

≈ γN2

c wb, (8)

where the approximation is valid when Nb is large. In this case, Eq. (8) further

simplifies to γ < 1, where it should be understood that the specific merging value γ = 1

appears as a result of the simple structure of the example case. In a more general scope,

the expected weight between modules [wmn] ≈ N2

c wb is independent of the number of

modules Nb, i.e., network size. Thus, merging is solely controlled by γ. This is different

from the sparse network case discussed above, where increasing system size eventually

triggers merging as the expected number and the total weight of links between modules

decreases.

Finally, we analyse the effects of a single strong link between the modules in the

latter example case. On the basis of the above analysis, merging happens if the total

weight between the two modules exceeds γ [wmn], which is again of the order of N2

c wb.

For sufficiently large Nc, the expected weight is so large that adding one strong link is

not enough for merging to occur. Smaller modules are merged more easily. However,

the resolution limit still depends only weakly on the number of modules, i.e., system

size. This means that sweeping γ can be used to probe communities of different sizes,

and the suitable range of γ values is practically independent of the system size.

These considerations show that the resolution of the weighted RB method does

not necessarily decrease when dense networks grow in size, unlike for sparse networks.

However, for practical purposes, issues such as the distribution of weights both within

and between the blocks is expected to affect the actual resolution, and the above

examples should be viewed as illustrative only.

3. Example application: modules in a stock correlation network

As a real-world example, we apply the weighted RB method to a correlation-based

network of stock return time series. Networks of this type are of special interest as the
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correlations between asset returns are the main input in the classical and still widely

used Markowitz portfolio optimization theory [30]. Correlations of stock returns were

first studied from the network point of view by Mantegna [25], who defined a correlation-

based metric and was consequently able to identify modules that make sense also from

the economic point of view by using the maximal spanning tree. This work has been

extended by Bonanno et al. [26, 31, 32] and Onnela et al. [33, 34], with the overall

conclusion that there is cluster structure which corresponds well to economic sectors.

Recently, the structure of correlation-based stock interaction networks has also been

studied with the weighted version of the clique percolation method [20] and by spectral

and thresholding analyses [10, 27, 35, 36].

To construct our network, we use a data set consisting of the daily closing prices of

N = 116 NYSE-traded stocks from the time period from 13-Jan-1997 to 29-Jan-2000‖.

We estimate the equal time correlation matrix of logarithmic returns by

Cij =
〈rirj〉 − 〈ri〉〈rj〉

√

[〈ri
2〉 − 〈ri〉2][〈rj

2〉 − 〈rj〉2]
, (9)

where ri is a vector containing the logarithmic returns of stock i. Since there is a

small number of elements of C which are slightly negative, we define the weights of our

network by

Wij = |Cij| − δij , (10)

which can be justified by interpreting the absolute values of correlations as measures of

interaction strength without considering whether the interaction is positive or negative.

Here, we take a multiresolution approach to the problem of detecting modules in

the above matrix, and sweep the value of γ to obtain the modules of W at multiple levels

of resolution. For each value of γ, we assign nodes into modules such that the energy

(4) is minimized. Evidently, exploring all possible configurations is computationally

impossible, so that some approximative method has to be employed. We have chosen

the simulated annealing approach, using single-spin flips as well as block flipping as the

elementary Monte Carlo operations. It should be noted, however, that it cannot be

guaranteed that the obtained energy minimum is a global one. For the RB method,

there is no way around this problem.

First, we have investigated the number of modules as a function of γ (see Fig. 3a).

For γ / 0.8, all nodes are assigned to a single module. When γ is further increased,

the number of modules starts to rapidly increase, until finally each module corresponds

to a single node. It is worth noting that no plateaus are seen in the graph, except for

the trivial case of γ / 0.8. In Ref. [19], using a related multiresolution method, such

plateaus were shown to exist for test-case networks, corresponding to built-in hierarchical

modules. Plateaus would hence yield ”natural” choices of the tuning parameter. Their

absence in Fig. 3a) means that there is no range of γ, which would correspond to a stable

module configuration. However, stability of the number of modules only gives partial

‖ The length of the time series is 1000 trading days
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Figure 3. The number of modules (a) and the sizes of the two largest modules (b) as

a function of γ.

insight into the stability of the modular structure. Especially for real-world networks

with modules of different sizes and internal weights, changes in this number may only

reflect e.g. splitting of small, weak modules, while the strongest modules remain more

or less stable when γ is increased. This appears to be the case for our stock interaction

network. Panel b) of Fig. 3 depicts the sizes of the two largest modules as a function of

γ. The sizes remain almost constant for an interval of approx. γ ∈ [1.4, 3], and thus the

increase in the module number can be attributed to splitting of smaller modules.

Next, we turn to the modules themselves. In order to visually compare the detected

modules with known structural features of the investigated correlation matrix, we have

utilized the maximal spanning tree (MST) method. The MST of a network or a

matrix is a tree connecting all the N nodes with N − 1 links, such that the sum of

the link weights is maximized. Earlier, it has been shown that for stock correlation

matrices, branches of the MST correspond well to business sectors or industries for the

NYSE [25, 31, 32, 33, 34] as well as FTSE [37]. The typical way to categorize stocks into

business sectors is to use the Forbes classification [38]. Panel a) in Figure 4 displays

the MST for the stock network, together with the Forbes classification. For comparison,

we first set γ = 1 (Fig. 4b), and color the nodes according to modules detected by the

RB method for the full correlation matrix as above. The value γ = 1 is of particular

interest, as in this case the Hamiltonian of Eq.(1) is equivalent with the weighted version

of modularity [12]. For this value, four modules of sizes 13, 34, 34 and 35 are found. For

each module, the majority of member nodes are also connected in the MST, and there

is a correspondence between the MST branches and the modules. The smallest module

corresponds very well to the Energy sector in the Forbes classification, and the other

modules roughly to combinations of different sectors. It should be noted here that the

Forbes classification is an external one, i.e., it is not based on empirical observations on

stock correlations, and thus some Forbes sectors are also relatively disjoint in the MST

of Fig. 4a).
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Figure 4. (a) The maximal spanning tree and business sectors according to Forbes

[38]. (b) The maximal spanning tree and the modular structure for γ = 1. Each color

corresponds to a module. (c) The maximal spanning tree and the modular structure

for γ = 1.4. Modules of size larger than two are depicted by different colors and the

rest of the nodes by empty symbols.

Let us now change the resolution of the RB method by moving towards larger values

of γ. Panel c) of Figure 4 displays the modular structure obtained with γ = 1.4, i.e.,

at the onset of the ”plateau” regime of the two largest module sizes. Only modules

of size larger than two are depicted by different colors, while the rest of the nodes are

indicated by open symbols. An immediate observation is that the modules correspond

remarkably well to the different branches of the MST and very well to the Forbes

classification. Increasing γ further splits the modules into smaller ones: for γ = 2 the

number of modules is already 58 and thus their average size is only 2. The largest

modules, corresponding to the Energy sector and the Electric Utilities industry, are the

last ones to break at around γ ≈ 3 and γ ≈ 4, respectively. Interestingly, the Energy

module seems to contain a strong submodule of four nodes. This is also seen as a

plateau in the graph depicting the size of the second-largest component (Fig. 3b), which

indicates that also large values of γ can yield useful information on the modules.

Finally, we study the correspondence between the modular structure obtained with

the RB method and the Forbes classification to business sectors in a more quantitative
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Figure 5. The sensitivity (a) and the specificity (b) of the modular structure with

respect to the Forbes classification of business sectors [38] as a function of γ. The solid

line is a guide to the eye.

way. We use two measures defined in Ref. [15]: the sensitivity defined as the fraction of

pairs of nodes classified to the same Forbes sector that are assigned to the same module

by the RB method and, correspondingly, specificity as the fraction of pairs of nodes

belonging to different sectors that are assigned to different modules by the RB method.

Sensitivity and specificity are depicted in Figures 5(a) and 5(b), respectively. The

sensitivity curve shows a sudden increase in the interval γ ∈ [0.8, 1.8]. The reason for its

low initial value is the assignment of all nodes to a single module, as discussed above,

and the increase corresponds to modules splitting into smaller units which correspond

well to the Forbes classification. The high value of sensitivity for large γ means that

the relatively small modules given by the RB method are proper subsets of the Forbes

business sectors. The specificity curve shows a decreasing trend, but its values still

remain relatively high. This trend is explained by an increasing number of small modules

(including modules consisting of one node only), such that nodes which belong to a

common sector appear in different modules. Overall, the above results indicate that the

modular structure detected by the weighted RB method corresponds well to the Forbes

classification for a wide range of γ, and the small modules obtained at large γ seem to

be valid submodules of larger ones.

For comparison, we have also carried out the above analysis using the recently

introduced weighted multiresolution method by Arenas et al. [19]. This method

resembles the Potts approach; however, the tuning parameter γ is replaced by the

parameter r, which can be interpreted as representing the weight of a self-link added to

each node. The number of modules, the sizes of the two largest modules, the sensitivity

and the specificity as functions of the tuning parameter r are depicted in Fig. 6.

Comparison with Figs. 3 and 5, in which the same results for the RB method are

shown, suggests that for the correlation matrix analyzed here, both the AFG and RB

methods behave in a very similar manner.



Detecting modules in dense weighted networks with the Potts method 12

Figure 6. The number of modules (a), the sizes of the two largest modules (b), the

sensitivity (c) and the specificity (d) as functions of r with the AFG method. The

solid line is a guide to the eye.

4. Conclusions

Here we have presented, analyzed, and applied a weighted version of the q-state Potts

model approach by Reichardt and Bornholdt [15], introducing a well-motivated null

model for expected weights within modules. Our target has been to investigate the

modular structure of dense weighted networks such that instead of the topology, the link

weights determine the modules. In contrast to conventional approaches, where weights

considered insignificant are filtered out, our target has been to utilize all information

contained in the weight matrix. The weighted RB model fulfills this criterion, as it

can equally well be applied to sparse and dense networks. In addition, it contains

a parameter that allows tuning its resolution, which is useful for studies of nested

community structures. Analysis of the resolution limit of the method has shown that for

simple example cases, dense modular networks behave differently from sparse ones as the

resolution is only weakly dependent on the network size. As a practical application, we

have used the method in analysis of the modular structure of a stock correlation matrix.

Our results indicate that by varying the tuning parameter value, the method is able to

detect modules which correspond to relevant business sectors, as well as substructure

inside these modules. Thus it turns out that the weighted Potts method provides a

feasible approach to community detection in dense networks.
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[6] Barrat A, Barthélémy M, Pastor-Satorras R and Vespignani A 2004 Proc. Natl. Acad. Sci. (USA)

101 3747–3752
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[22] Fortunato S and Barthélémy M 2007 Proc. Natl. Acad. Sci. 104(1) 36
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[28] Erdös P and Rényi A 1959 Publ.Math.Debrecen 6 290

[29] Newman M E J 2004 Phys. Rev. E 70(5) 56131

[30] Markowitz H 1952 The Journal of Finance 7(1) 77–91

[31] Bonanno G, Caldarelli G, Lillo F and Mantegna R N 2003 Phys. Rev. E 68(4) 046130
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