
ar
X

iv
:0

80
5.

14
49

v1
 [

ph
ys

ic
s.

so
c-

ph
]

 1
0

M
ay

 2
00

8

A sequential algorithm for fast clique percolation

Jussi M. Kumpula1,∗ Mikko Kivelä1, Kimmo Kaski1, and Jari Saramäki1
1Department of Biomedical Engineering and Computational Science,

Helsinki University of Technology,

P.O. Box 9203, FIN-02015 HUT, Finland

(Dated: May 10, 2008)

In complex network research clique percolation, introduced by Palla et al., is a deterministic
community detection method, which allows for overlapping communities and is purely based on
local topological properties of a network. Here we present a sequential clique percolation algorithm
(SCP) to do fast community detection in weighted and unweighted networks, for cliques of a chosen
size. This method is based on sequentially inserting the constituent links to the network and
simultaneously keeping track of the emerging community structure. Unlike existing algorithms, the
SCP method allows for detecting k-clique communities at multiple weight thresholds in a single run,
and can simultaneously produce a dendrogram representation of hierarchical community structure.
In sparse weighted networks, the SCP algorithm can also be used for implementing the weighted
clique percolation method recently introduced by Farkas et al. The computational time of the SCP
algorithm scales linearly with the number of k-cliques in the network. As an example, the method
is applied to a product association network, revealing its nested community structure.

PACS numbers: 89.75.Fb,89.75.Hc,89.75.-k

I. INTRODUCTION

Over the last decade, complex networks have become
a standard framework in the study of complex sys-
tems [1, 2]. The simplicity of the network representa-
tion, where the interactions and interacting elements are
mapped to links and nodes, respectively, facilitates its use
on a number of systems, ranging from human societies
to biological systems. One prominent feature of com-
plex networks is related to their mesoscopic properties.
Networks often display modular structure, i.e., are struc-
tured in terms of modules or communities, which are, in
general, sets of densely interconnected nodes. Such com-
munities are often closely related to functional units of
the system, for example groups of individuals interact-
ing with each other in society [3, 4, 5, 6], or functional
modules in metabolic networks [7, 8, 9].

The problem of detecting communities in complex net-
works has received a lot of attention during the last
years [10]. This problem is twofold: first, there is no
unique way to rigorously define what constitutes a com-
munity. For any definition, several choices have to be
made: whether communities are defined using local or
global network properties, whether nodes can participate
in several communities, and whether the definition allows
for weighted networks and nested hierarchy of communi-
ties. Second, any definition is useful in practice only if
it can be reformulated as an algorithm which scales well
enough to allow processing networks of large enough size.
As a result, a large number of community definitions and
their algorithmic implementations have been proposed

∗Electronic address: jkumpula@lce.hut.fi

over the recent years [11, 12, 13, 14, 15, 16].
In this paper we focus on a fast algorithmic imple-

mentation of the clique percolation (CP) method, orig-
inally introduced by Palla et al. [9]. The CP method
is deterministic and it is based solely on local topolog-
ical properties, defining a k-clique community as a set
of nodes belonging to adjacent k-cliques. This allows
for overlapping communities, i.e., nodes having multiple
community memberships. The CP method has earlier
been successfully applied to various community detec-
tion problems: detection of protein communities related
to cancer metastasis [17], analysis of communities in co-
authorship, word-association and protein-interaction net-
works [9], and time evolution of social groups [6]. In
contrary to existing implementations (www.cfinder.org),
which detect k-clique communities for all values of k by
first finding the maximal cliques by an exponentially scal-
ing algorithm [9], we focus on rapid detection of commu-
nities for a chosen value of k. Our sequential clique perco-
lation (SCP) algorithm is based on sequentially inserting
links to the network and keeping track of the emerging
community structure. It has specifically been designed
for weighted networks containing hierarchical commu-
nities which are (mostly) encoded in the link weights.
When links are inserted in decreasing order of weight,
the algorithm allows for detecting k-clique communities
at chosen threshold levels in a single run and simultane-
ously produces a dendrogram representation of a possible
hierarchical structure. In addition, the algorithm can be
used for very fast community detection for unweighted
networks.

This paper is structured as follows: first, we present
our algorithm for the simplest, unweighted case, and dis-
cuss its scaling properties. We then move on to detect-
ing nested communities in weighted networks, applying
the algorithm to a product association network gener-

http://arXiv.org/abs/0805.1449v1
mailto:jkumpula@lce.hut.fi

2

ated from data on sellers and products on an online auc-
tion site. Finally, we discuss a variation of the algorithm
which is based on ordering k-cliques according to their
weighted properties, and present our conclusions.

II. THE SCP ALGORITHM

Let us begin by defining k-cliques and k-clique com-
munities [9, 18]:

• A k-clique is a set of k nodes which are all con-
nected to each other. A k-clique community, or
k-community, is a set of nodes which can be reached by
a series of overlapping k-cliques, where overlap means
that the k-cliques share k − 1 nodes.

It should be noted that 2-cliques correspond to pairs
of nodes connected by single links and 1-cliques to single
nodes. Given a network Γ, the goal is then to find the
k-communities defined as above. In our case, we restrict
ourselves to some specific values of k. If the network in
question is not too dense, choosing k = 3 or k = 4 usu-
ally yields useful information. Our algorithm is based on
detecting and storing k-communities as they emerge and
consolidate when links are sequentially inserted into the
network. One can think of the process as first ”removing”
each link l from the network Γ, and then inserting them
back one by one. For unweighted networks, the links can
be inserted in any order, whereas for weighted networks,
it may be desirable to sort the links by weight.

Our algorithm for detecting k-communities consists of
two phases: the first phase of the algorithm detects k-
cliques which form when a link is inserted. These are then
fed to the second phase, which keeps track of formation
and merging of k-communities by processing the found
k-cliques. The two parts of the algorithm are described
in detail below.

A. Phase I: Detecting the k-cliques

The first part of the algorithm involves detecting k-
cliques which are formed when a link is inserted into the
network. Suppose now that the inserted link connects
nodes vi and vj (see Fig. 1). The minimum requirement
for a new k-clique to form is that nodes vi and vj both
have degree of at least k− 1. If this is the case, the algo-
rithm proceeds by collecting all nodes that are neighbors
of both nodes, Nij = Ni∩Nj , where N denotes neighbor-
hood. Now, when the link lij is added, each (k−2)-clique
contained in the set Nij will give rise to a new k-clique.
Therefore, all newly formed k-cliques are found by detect-
ing all the (k−2)-cliques in the Nij . For commonly used
small clique sizes, this is very fast: for 3-cliques, (k − 2)-
cliques are single nodes, while for k = 4, all connected
pairs of nodes in Nij give rise to a new 4-clique.

FIG. 1: Schematic illustration of the process for detecting
the k-cliques a newly inserted link completes. The dashed
line depicts the new link, inserted between nodes vi and
vj . The common neighbors of nodes vi and vj are Nij =
{vm, vn, vp, vq}. For detecting newly formed 4-cliques, all
pairs of nodes in Nij are checked to see if they are connected,
that is, if they form a 2-clique. Each 2-clique in the set gives
rise to a 4-clique, so in total the link lij will generate three
4-cliques. In the case k = 5, only one 3-clique is found, which
contains the nodes vm, vn and vp. It will give rise to a single
5-clique including these nodes in addition to vi and vj .

Next the k-cliques detected as above are fed one by one
into the second phase of the algorithm.

B. Phase II: Detecting the k-communities

The second phase of the algorithm detects and keeps
track of k-communities which form and merge when new
k-cliques are input from the first phase. Because a k-
community is defined as a set of nodes which all can be
reached by a series of overlapping k-cliques, the crucial
issue here is the efficient detection of overlap between k-
cliques. A naive approach would be to search for shared
sets of k − 1 nodes between the newly input clique and
all existing cliques. However, the required computational
effort makes this approach unpractical. Instead, we take
advantage of the sequential nature of the process by ”lo-
cally”detecting possible overlap of each new k-clique with
existing k-communities and by updating the community
structure accordingly.

Let us begin by noting that the k-community struc-
ture of a network can be represented by a bipartite net-
work, where the two types of nodes represent k-cliques
and (k−1)-cliques. In this network, a link exists between
two nodes of different type if the k-clique contains the
(k−1)-clique as a sub-clique. This is illustrated in Fig. 2.
The usefulness of this representation becomes apparent in
the following: each connected component in this bipartite
network corresponds to a k-clique community, because by
definition k-cliques belonging to the same community are
connected through shared (k − 1)-cliques. Furthermore,
connected components of the unipartite projections of the
bipartite network similarly correspond to k-clique com-

3

FIG. 2: Illustration of the algorithm for detecting k-clique
communities in a simple example network. Here, k = 3. a)
The original network consists of three 3-cliques labeled A,
B, and C. 2-cliques, i.e., nodes connected by single links,
are labeled with lower case letters. b) Bipartite network pre-
sentation of the clique structure. Note that in the bipartite
network, the 3-cliques B and C, which form a 3-clique com-
munity, are connected by the shared 2-clique f . Clique A

forms another 3-clique community. c) 3-cliques detected by
the first part of the algorithm as links are sequentially inserted
into the network. Each new k-clique is denoted by red nodes
whereas nodes associated with existing k-cliques appear gray.
d) Corresponding updates to the (k − 1)-clique network as a
result of the second part of the algorithm. k-clique commu-
nities correspond to connected components of this network
(shaded areas).

munities. In the following, we focus on the (k− 1)-clique
projection of this bipartite network. We denote the net-
work resulting from this projection by Γ∗. In this uni-
partite network, nodes v∗ represent the (k− 1)-cliques of
Γ, and links l∗ exist between nodes which are sub-cliques
of the same k-clique.

For the sake of clarity, we will first present a ”physical”
interpretation of Phase II of the algorithm, and then dis-
cuss the algorithmic implementation where certain short-
cuts can be made. Similarly to Phase I, where the orig-
inal network Γ is reconstructed link by link, Phase II of
the SCP algorithm sequentially builds up Γ∗ from the k-
cliques brought forward from Phase I. At the same time,
it keeps track of the connected components of Γ∗ (see
Fig. 2, panels c and d). These correspond to k-clique
communities. When a new k-clique is input from Phase
I, its constituent (k − 1)-cliques are first extracted; ob-
viously there are always k of such sub-cliques. Each of
these (k − 1) cliques corresponds to a node in Γ∗. Some
of these nodes may already be present, if the correspond-
ing (k − 1)-cliques have been handled earlier as part of

another k-clique; if not, they are created at this stage.
Finally, links are created between members of this set of
k nodes, and resulting changes in the connected compo-
nent structure of Γ∗ are recorded.

In the algorithmic implementation, things can be done
somewhat more efficiently, resembling techniques used in
link percolation. The actual network Γ∗ does not need
to be constructed, as it is enough to keep track of its
connected components, i.e., the component indices of
its nodes v∗. This is equal to link percolation in Γ∗,
which can be implemented for example with disjoint-set
forests [19]. At this stage it is enough to ensure that all
(k − 1)-clique-nodes corresponding to the new k clique
are marked to belong to the same component (the new
(k−1)-cliques and their links may either form a new con-
nected component, merge with an existing component, or
join together at most k existing components).

The above process is then repeated for each k-clique
input from Phase I. Finally, once all links have been in-
serted (Phase I) and the subsequently formed k-cliques
handled (Phase II), the k-communities of the original net-
work Γ can be read from the component indices of v∗,
assigning nodes of Γ to their corresponding communities.

In theory, it would also be possible to keep track of the
connected components of the whole bipartite network or
alternatively project the bipartite network to k-cliques
instead of (k − 1)-cliques. Both representations contain
the same connected components and would thus yield the
same k-clique communities. However, the former alter-
native is unnecessarily complicated as it involves nodes
of two types. The latter implementation is not as com-
putationally effective as the current choice in cases where
a newly inserted k-clique overlaps with a large number of
existing k-cliques.

C. Scaling of the algorithm

Let us next discuss the performance of the SCP algo-
rithm, before moving on to its application to weighted
network analysis. Obviously, the computational time re-
quired to process a network depends on its properties;
here, we wish to investigate the performance as a function
of network size and the number of k-cliques contained in
the network. To do this, we have applied the SCP algo-
rithm on three types of networks with adjustable sizes.
The first test case (GN), introduced by Girvan and New-
man [20], contains built-in communities and has often
been used for similar purposes. The GN networks used
here consist of groups of 32 nodes, where each node has
on the average 12 links to nodes of the same group and
4 links to other groups. The network size N is varied by
changing the number of such groups. The second type of
networks (WSN) is generated using a recently published
model of weighted social networks with communities [21],
using parameter values similar to the original reference.
As the third type, we have used co-authorship networks
based on the cond-mat archive (CM), constructed sim-

4

FIG. 3: Computation time of the algorithm for three values of k, as a function of the number of k-cliques (upper row) and
network size (lower row). Symbols denote different test networks: GN (�), WSN (N), and CM (◭), see text for details. The
solid line is a linear reference.

ilarly to e.g. [22]. However, in order to vary the net-
work size, we have used time windows of varying length,
such that two authors are connected if they have pub-
lished a joint paper during the time window. It should
be noted that although the WSN networks are inherently
weighted, and the CM networks can also be considered
such, here we consider binary versions of both types for
the performance analysis.

Results in Fig. 3 show that the computational time
grows practically linearly as a function of the number of
k-cliques for all networks. This is as expected, because
the algorithm detects and processes the cliques sequen-
tially. This is also reflected in the network size depen-
dence of the required computational time for both types
of model networks (GN, WSN). However, for the CM
networks, the computational time grows faster than lin-
early as a function of network size. This is because the
CM network is in fact a projection of a bipartite author-
publication network, and therefore contains large cliques.
These grow in size when the network size increases, and
thus the number of k-cliques grows faster than linearly
(see Section III B).

However, when very large cliques are not abundant in
the network under investigation, the algorithm is very
fast even for networks of large size. For example, detect-
ing 4-clique communities in a mobile phone call network
having approximately 4 million nodes and 6 million links
[23] takes approximately one minute on a standard desk-
top computer. The main practical limitations of this al-

gorithm seem to be related to the memory consumption
as it requires keeping all (k−1)-cliques of the network in
memory.

III. SCP FOR WEIGHTED NETWORKS

A. Thresholding and nested communities

Let us move on to weighted networks, where the con-
cept of community structure becomes somewhat more
complicated. Perhaps only for the very simplest cases,
where the networks are sparse, weights can be disre-
garded, such that communities are associated with the
pure topology of the network. However, this is usually
not feasible, as weighted networks can be rather dense,
even to such an extent that the topology no longer mat-
ters, as any modular structure is encoded in the link
weights only. This is the case for example in stock in-
teraction networks [24], whose natural representation is
a weight matrix with only nonzero elements.

For such networks, one is essentially left with two
choices: the first is to threshold the network, such that
links whose weights are considered insignificantly small
are removed and communities in the resulting sparse net-
work are detected. It is evident that choosing the right
threshold is a non-trivial task; in fact, for many cases
it may be better to take a multi-resolution approach,
by investigating the resulting community structure for

5

a range of thresholds. Another option is to consider the
weights directly when defining what constitutes a com-
munity, and to apply a method which is based on this
definition [24, 25].

In the original formulation of the clique percolation
algorithm, Palla et al. suggested a rule for choosing a
weight threshold w∗ for the network, such that the re-
sulting k-community structure would be as diverse as
possible [9]. More specifically, w∗ is chosen such that the
largest community is twice the size of the second largest
one, i.e., below the percolation threshold where a giant
k-clique community appears. For the original implemen-
tation, the algorithm had to be run from the beginning
for each threshold level. One of the benefits of our ap-
proach is that it allows for obtaining the k-communities
at any point of the process of adding links, which is just
thresholding done in reverse: If the links of the origi-
nal network Γ are sorted and processed in descending
order of weight, the algorithm yields for each link the k-
community structure of Γ thresholded by the weight of
the link. This is very useful for selecting the threshold,
as all threshold values can be processed in a single run.
Note that for dense networks, sweeping through the en-
tire range of weights is not needed: the algorithm can be
stopped before (or immeadiately after) communities are
entirely ”smeared out” by a giant community. Stopping
the algorithm in time can greatly reduce the workload
in dense networks as usually only a small fraction of all
links need to be added before the percolating component
is found, after which adding more links does not increase
the number of nodes in the communities, but only makes
the community denser in cliques.

However, by focusing on a single threshold weight,
valuable information of the community structure con-
tained in the correlations between weights can be lost.
Often, the modular structure of networks is inherently hi-

erarchical – denser and stronger communities are nested
inside weaker ones, which may further be embedded in-
side even weaker ones [16, 26, 27, 28]. It is then natu-
ral to investigate this nestedness by considering the de-
velopment of the community structure when the weight
threshold is swept through the range of interest. Evi-
dently, this requires book-keeping of the emergence and
merger of communities as the threshold is progressively
lowered. For the SCP algorithm, this book-keeping is in-
built: all necessary information can directly be recorded
in Phase II of the algorithm. In particular, it is easy to
store when a k-community appears, which nodes belong
to it, how its size grows as new k-cliques join it, and when
it merges with other k-communities. This information on
the nested community structure is best visualized with a
dendrogram, which is a common presentation format in
agglomerative community detection (see, e.g., [28]). In a
dendrogram, horizontal lines correspond to communities,
and a branching of the lines denotes communities merg-
ing. Choosing a single weight threshold would correspond
to taking a vertical slice of the dendrogram.

To illustrate the above, Fig. 4 shows two examples of

the nested community structure within a product cate-
gory network, for k = 3 and k = 4. This network is
constructed from online trading data, downloaded from
the Finnish auction website Huuto.net. In this network,
nodes correspond to product categories (N = 345), and
the weights of links connecting two categories to the num-
ber of individuals who have been trading in both of them.
This network is very dense, the number of links is 52536,
corresponding to a link density ρ = 0.89, and thus the
network can be considered as a suitable test case for
the evolution of community structure while sweeping the
threshold weight. In Fig. 4 the labels associated with
each community describe their dominant product cate-
gories. Although the dendrograms formed by using k = 3
and k = 4 are not identical, several similar communities
appear for both values. From the commonsensical point
of view, these appear natural: electronic devices and
computer components merge to a single community, as do
music and movies, and children’s and women’s clothing.

In practice we have observed that it is not always pos-
sible nor meaningful to include all k-communities in such
a visualization, because it would be dominated by sin-
gle k-cliques joining larger k-communities. Therefore, for
practical purposes, it is useful to threshold the dendro-
gram such that only k-communities which are larger than
a threshold size Nth appear in the plot.

B. Weighted k-clique percolation

As pointed out above, considering the weights in the
definition of what constitutes a community is an alterna-
tive to simply discarding low-weight links. Such an exten-
sion for clique percolation has recently been introduced
by Farkas et al. in [25]. In this method, each k-clique is
assigned a ”weight”, which equals the intensity [29] of its
edge weights. The intensity is defined as the geometric
mean of the link weights in the k-clique. The commu-
nity structure is then obtained by choosing an intensity
threshold I∗ and taking into account only those k-cliques
whose intensity is above I∗.

For our SCP algorithm, a simple modification allows
for weighted clique percolation according to the above
scheme. To achieve this, instead of building the k-
communities simultaneously as the k-cliques emerge, all
links are first inserted to the network and the resulting
k-cliques are stored. Then, the intensity of each of these
k-cliques is calculated, and the cliques are sorted with
respect to the intensity. Finally, the sorted k-cliques are
processed one by one by the second part of the algo-
rithm, until the intensity threshold is reached. Multiple
thresholding levels are obtained as before, but now with
respect to k-clique intensities, and a dendrogram can be
constructed similarly. Note that in addition to intensity,
any other measure describing the ”weight” of the cliques
can be used, e.g., if homogeneous cliques are sought for,
one could also take the clique coherence [29] into account.
Sorting cliques according to their intensities was briefly

6

FIG. 4: Dendrogram visualization of the nested k-community structure of the trading categories of the Finnish online auction
site Huuto.net for k = 3 (a) and k = 4 (b).

described by Farkas et al. in [25]; their construction ap-
pears somewhat similar to ours as the intensity-sorted
cliques are handled in succession, and the method for ob-
taining overlapping k-communities seems to correspond
to building the whole bipartite network between k- and
(k − 1)-cliques.

The above procedure requires keeping all k-cliques in
the memory in addition to the (k − 1)-cliques. In most
cases the loss of speed is minimal, as the additional com-
putational load is related to the memory consumption
and sorting of cliques, which can be done in log-linear
time. However, a possible problem related to the SCP
algorithm – and the weighted clique percolation method
in general – is that all k-cliques have to be processed in-
dividually, and their number can be very large in dense
networks. When the link weight thresholding procedure
(Section III A) is applied, this problem can be somewhat
circumvented by simply stopping the algorithm as soon
as enough links have been inserted for obtaining the com-
munity structure at the desired ”resolution.”However, for
intensity-based clique percolation this cannot be done, as
all k-cliques have to be detected and sorted first, ren-
dering the performance of the method poor for dense
weighted networks. As pointed out by Palla et al. [9],
the problem is that the number of sub-cliques of size k

within a clique of size s is
(

s
k

)

. In the limit s ≫ k this
leads to

(

s

k

)

≈
sk

k!
. (1)

Hence for constant k and large s, the number of k-cliques
grows as kth power of s.

IV. CONCLUSIONS

We have introduced a sequential clique percolation al-
gorithm for detecting k-clique communities in a network
by sequentially inserting its edges and keeping track of
the emerging community structure. This algorithm has
specifically been designed for (dense) weighted networks,
where weight-based thresholding of either the links or the
cliques formed by them is necessary for obtaining mean-
ingful information on the structure. By applying the al-
gorithm on test networks, we have shown that the compu-
tational time required to process a network scales linearly
with the number of k-cliques in the network. The sequen-
tial nature of the algorithm allows run-time construction
of a dendrogram presentation of the nested hierarchical
k-community structure, which we have illustrated using
a product category network.

The main tradeoff for our algorithm is that in a sin-
gle run, it detects k-communities for a chosen value of
k, instead of starting from the maximal cliques and pro-
ceeding towards smaller ones. Hence the SCP algorithm
can be considered complementary to earlier presented so-
lutions [9] . Neither of these algorithms can be argued
to be strictly better or faster than the other as their per-
formance depends heavily on the network topology and
other aspects of the problem they are solving. The SCP
algorithm is particularly useful when a small clique size k

is used and when multiple weight threshold levels need to
be studied, or no prior knowledge of the proper thresh-
old level of a dense weighted network is at hand. The
algorithm can also be considered as a reasonable choice
for very large sparse networks as suggested by the short
computation times of the community structure of a mo-
bile telephony network having millions of nodes and links.

Acknowledgements: We thank J. Hyvönen and

7

J. Kertész for useful discussions, and acknowledge pro-
gramming assistance by J. Hyvönen. We acknowledge
support by the Academy of Finland, the Finnish Cen-
ter of Excellence program 2006-2011, project no. 213470.

J.K. is partly supported by the GETA graduate school.
J.S. and M.K. acknowledge support by the European
Commission NEST Pathfinder initiative on Complexity
through project EDEN (Contract 043251).

[1] G. Caldarelli, Scale-Free Networks: Complex Webs in

Nature and Technology (Oxford University Press, New
York, 2007).

[2] M. Newman, A.-L. Barabási, and D. Watts, The Struc-

ture and Dynamics of Networks (Princeton University
Press, 2006).

[3] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci.
99, 7821 (2002).

[4] D. Lusseau and M. E. J. Newman, Proc. R. Soc. B 271,
477 (2004).

[5] A. Arenas, L. Danon, A. Dı́az-Guilera, P. M. Gleiser, and
R. Guimerá, Eur. Phys. J. B 38, 373 (2004).

[6] G. Palla, A.-L. Barabasi, and T. Vicsek, Nature 446, 664
(2007).

[7] P. Holme, M. Huss, and H. Jeong, Bioinformatics 19, 532
(2003).

[8] R. Guimerá and L. A. N. Amaral, Nature 433, 895
(2005).

[9] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Nature
435, 814 (2005).

[10] S. Fortunato and C. Castellano, arXiv:0712.2716 (2007).
[11] M. E. J. Newman and M. Girvan, Phys. Rev. E. 69,

026113 (2004).
[12] M. E. J. Newman, Eur. Phys. J. B 38, 321 (2004).
[13] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and

D. Parisi, Proc. Natl. Acad. Sci. 101, 2658 (2004).
[14] M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci.

104, 7327 (2007).
[15] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and

E. Lefebvre, arXiv:0803.0476 (2008).

[16] A. Lancichinetti, S. Fortunato, and J. Kertész,
arXiv:0802.1218 (2008).

[17] P. F. Jonsson, T. Cavanna, D. Zicha, and P. A. Bates,
BMC Bioinformatics 7 (2006).

[18] I. Derenyi, G. Palla, and T. Vicsek, Phys. Rev. Lett. 94,
160202 (2005).

[19] R. R. T.H. Cormen, C.E. Leiserson, Introduction to Al-

gorithms (The MIT Press, 1990).
[20] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci.

(USA) 99, 7821 (2002).
[21] J. M. Kumpula, J. P. Onnela, J. Saramäki, K. Kaski, and

J. Kertész, Phys. Rev. Lett. 99, 228701 (2007).
[22] M. E. J. Newman, Phys. Rev. E 64, 016131 (2001).
[23] J. P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó,

D. Lazer, K. Kaski, J. Kertész, and A. L. Barabási, Proc.
Natl. Acad. Sci. 104, 7332 (2007).

[24] T. Heimo, J. M. Kumpula, K. Kaski, and J. Saramäki,
arXiv:0804.3457 (2008).

[25] I. Farkas, D. Ábel, G. Palla, and T. Vicsek, New Journal
of Physics 9, 180 (2007).

[26] A. Clauset, C. Moore, and M. E. J. Newman, Lect. Notes
Comput. Sc. 4503, 1 (2007).

[27] M. Sales-Pardo, R. Guimerá, and L. A. N. Amaral, Proc.
Natl. Acad. Sci. (USA) 104, 15224 (2007).

[28] A. Clauset, C. Moore, and M. E. J. Newman, Nature
453, 98 (2008).

[29] J.-P. Onnela, J. Saramäki, J. Kertész, and K. Kaski,
Phys. Rev. E 71, 065103(R) (2005).

