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Summary 

The identification of key populations for conservation or eradication is a major 

challenge in population ecology, particularly when dealing threatened, invasive, and 

pathogenic species. Network theory was applied to map the genetic structure in a 

metapopulation system using microsatellite data from populations of the threatened 

seagrass Posidonia oceanica, as a model, sampled across its whole geographical range. 

This approach allowed the characterization of hierarchical population structure, and the 

identification of populations acting as hubs critical for relaying gene flow and 

sustaining the metapopulation system. This development opens major perspectives in a 

broad range of applications of molecular ecology and evolution such as conservation 

biology and epidemiology, where targeting specific populations is crucial. 
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Understanding the connectivity between components of a metapopulation system 

and their role as weak or strong links remains a major challenge of population ecology 

(1-3). Advances in molecular biology fostered the use of indirect approaches to 

understand metapopulation structure, based on describing the distribution of gene 

variants (alleles) in space within the theoretical framework of population genetics (4-7). 

Yet, the premises of the classical Wright-Fisher model (4, 6) are often violated in real 

metapopulation systems, such as “migration-drift equilibrium” (8), “equal population 

sizes” or symmetrical rate migration among populations. Threatened or pathogen 

species, for example, are precisely studied for their state of demographic disequilibrium 

due to decline and local extinctions in the first case, or to their complex dynamics of 

local decline and sudden pandemic burst in the second. Furthermore, the underlying 

hypotheses of equal population size and symmetrical migration rates hamper the 

identification of putative population “hubs” centralizing migration pathways or acting 

as sources in a metapopulation system, which is a central issue in conservation biology 

or epidemiology.  

Network theory is emerging as a powerful tool to understand the behavior of 

complex systems composed of many interacting units (9-11). Although network theory 

has been applied to a broad array of problems (12-14), only recently has it been adapted 

to examining genetic relationships among populations or individuals (15, 16). Yet, 

relevant properties of networks, such as resistance (9) to perturbations (i.e. node 

paralysis or destruction), the ability to host coherent oscillations (17) or the predominant 

importance of nodes or cluster of nodes in maintaining the integrity of the system or 

relaying information through it can be deducted from the network topology and specific 

characteristics (10, 11). Here we apply network theory to population genetics data of a 

threatened species, the Mediterranean seagrass Posidonia oceanica, to demonstrate its 



4 

power to characterize population genetic structure and to identify populations that are 

critical to the dynamics and sustainability of the whole system. These results open 

major perspectives in evolutionary ecology, and more specifically in conservation 

biology and epidemiology where the capacity to target populations deserving major 

efforts of conservation or control is crucial. 

  

We build networks of population connectivity for a system of 37 meadows of the 

marine plant Posidonia oceanica, sampled across its entire geographic range -the 

Mediterranean Sea-, by using seven microsatellite markers (18).  The network was built 

by considering any pair of populations as linked when their genetic distance (Goldstein 

distance (19)) is smaller than a suitably chosen distance threshold (20). We highlight 

these links as the relevant genetic relationships either at the Mediterranean (the full 

dataset) or at the regional (28 populations along Spanish coasts) scales.   

The topology of the network obtained at the Mediterranean scale (Fig. 1) 

highlights, without any a priori geographical information being used, the historical 

cleavage between Eastern and Western basins (18) and the transitional position of the 

populations from the Siculo-Tunisian Strait (see Fig. 1).  The average clustering 

coefficient (20), <C>=0.96, is significantly higher than the one expected after randomly 

rewiring the links (<C0>=0.76 with σ0=0.02, after 10000 randomizations) revealing the 

existence of clusters of populations more interconnected than expected by chance. The 

values of betweenness centrality, quantifying the relative importance of the meadows in 

relaying information flow through the network (20), immediately highlight a meadow in 

Sicily (present in  21% of all shortest paths among populations), together with another 

one in Cyprus (16%), as the main stepping-stones between the pairs of populations 

sampled in the Western and Eastern basins, respectively (Fig. 1 and Table S1). These 
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results are in agreement with the genetic structure revealed with classical population 

genetics analysis (Analysis of Molecular Variance “AMOVA”), revealing past vicariance 

(18) and a secondary contact zone in the Siculo-Tunisian Strait. The metapopulation 

structure, clustering and ‘transition zones’ derived from the network analysis arise 

without any a priori input on clustering as needed for AMOVA, and without using 

geographic information in the analysis of allelic richness previously performed to 

support the existence and localization of a contact zone (18).  

Closer examination of the network conformed by the populations along the 

Spanish coasts (Figure 2, Table 1), more extensively and homogeneously sampled than 

the rest of the Mediterranean (Table S1), showed that the degree distribution, P(k), i.e. 

the proportion of nodes with  k connections to other nodes, decays rapidly for large k 

(Fig 3.a) and that the six highest values are all observed in samples collected in the 

Balearic Islands (Fig 2, Table 1). The average clustering coefficient of <C>=0.4 was 

significantly higher than that obtained in the corresponding randomized networks 

(<C0>=0.13 with σ0=0.05 after 10000 realizations), whereas the local clustering decays 

as a function of the degree k (Fig 3.b) which indicates that the central core is 

substructured into a small set of hubs, with high connectivity and low clustering, linking 

groups of closely connected nodes (i.e. with high clustering).  Examination of the 

relationship between the degree of a node and the average degree of the populations 

connected to it showed an abundance of links between highly connected and poorly 

connected nodes (Fig 3.c), a property termed dissortativity, present in many biological 

networks (21), and reveals a centralized topology. This observation indicates that 

seagrass populations along the Spanish continental coasts are genetically closer to 

Balearic populations than to geographically closer populations. Additionally, the highest 

values of betweenness centrality (Table 1) are also attained at the Balearic populations, 
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suggesting that the meadows of this region play or have played a central role in relaying 

gene flow at the scale of the Spanish coasts. Moreover, the betweenness centrality 

increases exponentially with the connectivity degree k (Fig. 3d). All these findings 

reveal a star-like structure where hubs are connected in cascade and the central core is 

the set of Balearic populations. A clear perspective of this pattern is shown by the 

resulting Minimum Spanning Tree of populations (Fig. S3). The biological implication 

is a great centrality of the Balearic Islands, acting or having acted as a hub for gene flow 

thorough the system. 

 Populations with high degree k might either be sources sustaining the system (i.e. 

spreading propagules), or sinks receiving gene flow from all the other populations, or 

both. The extremely low rate of sexual recruitment inferred in populations with low 

clonal diversity (R) renders those, if highly connected, much more likely to disperse than 

to receive. The presence in the Balearic Islands of the two populations with the lowest 

observed clonal diversity and the highest connectivity (Es Port, R=0.1; k=10; and 

Fornells R=0.1; k=15), likely representing populations supplying “genetic material” to 

neighbor populations, suggests again that the Balearic islands is a key region for the 

dynamics and connectivity of the metapopulation system at the scale of the Spanish coast. 

Furthermore, 8 among 16 continental populations show extreme low connectivity (k=0), 

thereby allowing identification of those least likely to be rescued by other populations, 

once threatened. As in any genetic approach to metapopulation management, the role of 

currently observed connectivity in future population rescuing is more important if 

current connectivity is limited by dispersal ability rather than by competitive interactions 

that could change in the future in decaying populations.  Furthermore, given the 

particular millenary nature of P. oceanica clones, current genetic structure is likely to 
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integrate patterns of gene flow over past centuries, and thus may not reflect present-day 

dynamics.  

Both networks, that at the scale of the whole Mediterranean (Fig. 1) and that for 

the Spanish coasts (Fig. 2), presented “small world” properties (22), i.e. a diameter  

(L=1.39 and L=1.63 respectively, (20)) shorter than expected for random networks 

(<L0>=1.47 with σ0=0.01 and <L0>=2.53 with σ0=0.15 respectively, after 10000 

randomizations) whereas their clustering was much higher (see numerical values above), 

suggesting a highly hierarchical substructure. This provides clear evidence for the 

appearance of “short-cuts” in gene flow at multiple geographical scales along the 

history of this species, indicating rare events of large scale dispersal having a significant 

impact on the genetic composition of populations.  

These results demonstrate that network analyses are powerful tools to examine the 

structure of gene flow across different geographical scales. The use of specific network 

properties such as the betweenness centrality and the degree distribution allowed to 

identify populations relaying gene flow, or as sources supplying the system as well as 

those less connected, increasing vulnerability to local extinction.  The identification of 

key populations to maintain the gene flow across the species range is essential to guide 

conservation strategies for this endangered seagrass. In particular, this methodology 

successfully revealed the existence of an East-West cleavage in the Mediterranean and 

of a contact/transition zone in the Siculo-Tunisian Straight without any other a priori 

information such as geographic data or expected clustering of populations. Furthermore, 

network analysis tools provided graphical representations of the genetic relatedness 

between populations in a multidimensional space (15), free of some of the constraints 

(e.g. a tree-like structure or binary branching) compulsory in classical methods 

describing population relationships. Addressing gene flow using network theory may 
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prove a ground-breaking milestone in critical areas such as conservation biology, 

dealing with threatened or invasive species, and epidemiology, where the definition of 

target populations to be conserved or eradicated is of crucial importance. 
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Figure 1: The network of Mediterranean meadows in which only links with Goldstein 

distances smaller than the percolation distance Dp=91 (see Fig. S4) are present (20). 

Nodes representing populations are roughly arranged according to their geographic 

origin. The precise geographic locations are indicated as diamonds in the background 

map. One can identify two clusters of meadows, corresponding to the Mediterranean 

basins (east and west), separated by the Siculo-Tunisian Strait. The size of each node 

indicates its betweenness centrality (i.e. the proportion of all shortests paths getting 

through the node).  
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Figure 2: The network constructed with the Spanish meadows (20). Nodes are shown at 

the populations geographic locations. Node sizes characterize their betweenness 

centrality (i.e. the proportion of all shortests paths getting through the node).  
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Figure 3: Main topological properties found by analysing the structure of the network of 

meadows at the Spanish basin scale (Fig. 2).  (a) The complementary cumulative degree 

distribution P(degree>k), (b) the local clustering C(k), (c) the average degree <knn(k)> 

in the neighbourhood of a meadow with degree k, and (d) the degree-dependent 

betweenness, bc(k), as a function of the connectivity degree k.  
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Table 1: Local properties of the network constructed with the Spanish meadows. 

Information is given for the connectivity degree (k), betweenness centrality (bc) and 

clustering (C), as well as clonal diversity estimates (R) for each sample. 

REGION Name R k bc C REGION Name R k bc C 

Cala Jonquet 0,5 0 0 0 Addaia 0,67 0 0 0 

Port Lligat 0,28 0 0 0 

M
en

or
ca

 

Fornells 0,1 15 0,180 0,32 Cala Giverola 0,43 0 0 0 

Punta Fanals 0,68 1 0 0 Magaluf 0,68 8 0 1 

Torre Sal 0,5 0 0 0 

M
al

lo
rc

a 

Porto Colom 0,5 9 0,0046 0,89 Xilxes 0,35 8 0 1 

Es Castel 0,1 5 0 1 Las Rotes 0,73 5 0 1 

Es Port 0,1 10 0,0075 0,8 El Arenal 0,86 8 0 1 

Santa Maria 13 0,56 10 0,0075 0,8 Campomanes 0,7 0 0 0 

C
ab

re
ra

 

Santa Maria 7 0,54 10 0,0075 0,8 LaFossaCalpe 0,77 2 0 1 

Ib
iz

a Playa Cavallets 0,73 12 0,0037 0,58 Calabardina 0,88 0 0 0 

Es Pujols 0,67 1 0 0 Carboneras 0,32 0 0 0 

EsCalo de S’Oli 0,36 0 0 0 Rodalquilar 0,53 0 0 0 

Ses Illetes 0,6 0 0 0 Los Genoveces 0,34 1 0 0 

SP
A

N
IS

H
 B

A
L

E
A

R
IC

 IS
L

A
N

D
S 

Fo
rm

en
te

ra
 

Sa Torreta 0,51 2 0 1 

SP
A

N
IS

H
 IB

E
R

IA
N

 P
E

N
IN

SU
L

A
  

(O
RD

ER
ED

 F
RO

M
 N

O
RT

H
 T

O
 S

O
U

TH
) 

Roquetas 0,69 1 0 0 
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Supporting Online Material 

 

METHODS 

Molecular data. About 40 Posidonia shoots collected at each of the 37 sampled 

populations (Fig.1 and Table 2) were genotyped with a previously selected set of seven 

dinucleotide microsatellites (1) allowing the identification of clones (also called genets 

for clonal plants). Clonal diversity was estimated for each population as described in 

Arnaud-Haond et al. (1), and replicates of the same clone were excluded for the 

estimation of inter-population distances. The matrix of interpopulation distances was 

built using Goldstein metrics (2), thus taking into account the level of molecular 

divergence among alleles, besides the differences in terms of allelic frequencies.  

 

Networks.  We first built a fully connected network with the 37 populations 

considered as nodes. Each link joining pairs of populations was labeled with the 

Goldstein distance among them. We then removed links from this network of genetic 

similarity, starting from the one with the largest genetic distance and following in 

decreasing order, until the network reaches the percolation point (3, 4), beyond which it 

loses its integrity and fragments into small clusters. This means that gene flow across 

the whole system is disabled if connections at a distance smaller than this critical one, 

Dp, are removed. The precise location of this percolation point is made with the 

standard methodology adequate for finite systems (3, 4), i.e., by calculating the average 

size of the clusters excluding the largest one, ∑
<

=
max

2* 1
Ss

sns
N

S , as a function of the last 

distance value removed, thr,  and identifying the critical distance with the one at which 

<S>* has a maximum. N is the total number of nodes not included in the largest cluster 
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and ns is the number of clusters containing s nodes. Here we find Dp=91, as shown in 

Fig. S1. 

 

Figure S1. The average cluster size excluding the largest one, as a function of the 

imposed genetic threshold, at the whole Mediterranean scale. This identifies Dp=91 as 

the percolation threshold. 

 

Once the network at percolation point is obtained, we analyzed its topology and 

characteristics (See Table 2 below, and Fig.1), and interpret those biologically. The first 

column in Table 2 contains also the estimated clonal diversity R of the different 

populations, defined as the proportion of different genotypes found with respect to the 

total number of collected shoots.  
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Table S1: Local properties of the whole Mediterranean network for thr=Dp=91. 

Information is given for the betweenness centrality (bc) and clustering (C), as well as 

clonal diversity estimates (R) for each sample. 

 

REGION Name R bc C REGION Name R bc C 

Addaia 0,67 0,0010 0,980 Cala Jonquet 0,5 0,0031 0,946

Port Lligat 0,28 0,0031 0,946

M
en

or
ca

 

Fornells 0,1 0,0031 0,946

Cala Giverola 0,43 0 0,997

Magaluf 0,68 0,0010 0,981 Punta Fanals 0,68 0,0010 0,981

M
al

lo
rc

a 

Porto Colom 0,5 0,0031 0,946 Torre Sal 0,5 0,0010 0,981

Es Castel 0,1 0,0010 0,981 Xilxes 0,35 0,0010 0,981

Es Port 0,1 0,0031 0,946 Las Rotes 0,73 0,0010 0,981

Santa Maria 13 0,56 0,0010 0,981 El Arenal 0,86 0,0031 0,946

C
ab

re
ra

 

Santa Maria 7 0,54 0,0010 0,981 Campomanes 0,7 0,0031 0,946

LaFossaCalpe 0,77 0,0031 0,946

Ib
iz

a Playa Cavallets 0,73 0,0031 0,946

Calabardina 0,88 0,0003 0,997

Es Pujols 0,67 0,0031 0,946 Carboneras 0,32 0,0010 0,981

EsCalo de S’Oli 0,36 0,0010 0,981 Rodalquilar 0,53 0,0010 0,981

Ses Illetes 0,6 0,0031 0,946 Los Genoveces 0,34 0,0010 0,981

SP
A

N
IS

H
 B

A
L

E
A

R
IC

 IS
L

A
N

D
S 

Fo
rm

en
te

ra
 

Sa Torreta 0,51 0,0031 0,946

SP
A

N
IS

H
 IB

E
R

IA
N

 P
E

N
IN

SU
L

A
  

(O
RD

ER
ED

 F
RO

M
 N

O
RT

H
 T

O
 S

O
U

TH
) 

Roquetas 0,69 0,0010 0,981

 Tunis 0,85 0 1 Amathous ST3 0,44 0 1 

 Malta 0,74 0 1 Amathous ST5 0,62 0,0008 0,667

A. AzzuraST3 0,77 0,205 0,897

C
yp

ru
s 

Paphos 0,68 0,1579 0,333

A. AzzuraST5 0,72 0,0017 0,963

C
E

N
T

R
A

L
 B

A
SI

N
 

Si
ci

ly
 

Marzamemi 0,81 0,0003 0,995

E
A

ST
 B

A
SI

N
 

G
re

ec
e A. Nicolaos 0,69 0 1 
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At the Spanish coasts scale, no percolation point is found using the above 

procedure, meaning that the genetic structure in this area is rather different from the one 

at the whole Mediterranean scale. To construct a useful network representation of the 

meadows genetic similarity, the following alternative process was applied in order to 

determine a relevant distance threshold, thr, above which links are discarded. At a very 

low threshold (thr=16, see Movie S1) only the inner part of a central core, constituted 

by some meadows from the Balearic Islands, is connected. As the threshold is increased 

new meadows (from the central Spanish coast) become connected (thr=20). Beyond that 

value, more peripheral meadows are connected from the northern and southern Spanish 

coasts. The geographical extension of the connected cluster (Fig. S2) grows with the 

distance threshold and an important jump occurs at thr=22, when the northern and 

southern coasts get connected for the first time.  

 

Figure S2. The maximal geographic distance connected (at the Spanish coasts scale) as 

a function of the imposed distance threshold (thr). Above thr=22 the maximal 

geographic distance covered by connected populations nearly duplicates. 
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Further distance threshold increase does not contribute to geographical extension. 

Therefore, we find the value thr=22 and the resulting network as appropriate for 

topological characterization, since at this point the network contains a rich mixture of 

strong and weak links spanning all the available geographic scales within the 

Mediterranean Spanish coasts.  

 

Estimates of global and local properties of the network. The degree ki of a 

given node i is the number of other nodes linked to it (i.e., the number of neighbor 

nodes). The distribution P(k) gives the proportion of nodes in the network having 

degree k.  

We denote by Ei the number of links existing among the neighbors of node i. This 

quantity takes values between 0 and 
2

)1((max) −
= ii

i
kk

E , which is the case of a fully 

connected neighborhood. The clustering coefficient Ci of node i is defined as: 

)1(
2

(max) −
==

ii

i

i

i
i kk

E
E

E
C  

The clustering coefficient of the whole network <C> is defined as the average of 

all individual clustering coefficients in the system. The degree dependent clustering 

C(k) is obtained after averaging Ci for nodes with degree k. 

Real networks exhibit correlations among their nodes (5-11) that play an 

important role in the characterization of the network topology. Those node correlations 

are furthermore essential to understand the dynamical aspects such as spreading of 

information or their robustness against targeted or random removal of their elements. In 

social networks, nodes having many connections tend to be connected with other highly 

connected nodes. This characteristic is usually referred to as assortativity, or assortative 

mixing. On the other hand, technological and biological networks show rather the 
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property that nodes having high degrees are preferably connected with nodes having 

low degrees, a property referred to as dissortativity.  Assortativity is usually studied by 

determining the properties of the average degree <knn> of neighbors of a node as a 

function of its degree k. (5, 6, 12). If this function is increasing, the network is 

assortative, since it shows that nodes of high degree connect, on average, to nodes of 

high degree. Alternatively, if the function is decreasing, the network is dissortative, as 

nodes of high degree tend to connect to nodes of lower degree. In this last case, the 

nodes with high degree are therefore central hubs ensuring the connection of the whole 

system. 

 

The betweenness centrality of node i, bc(i), (13) counts the fraction of shortest 

paths between pairs of nodes which pass through node i. Let stσ  denote the number of 

shortest paths connecting nodes s and t and )(istσ  the number of those passing through 

the node i. Then,  

∑
≠≠

=
its st

st iibc
σ
σ )()( . 

The degree-dependent betweeness, bc(k), is the average betweeness value of nodes 

having degree k. 

 

Minimum Spanning Tree.  

Given a connected, undirected graph, a spanning tree of that graph is a subgraph without 

cycles which connects all the vertices together. A single graph can have many different 

spanning trees. Provided each edge is labeled with a cost (in our analysis the genetic 

distance among the connected populations) each spanning tree can be characterized by 

the sum of the cost of its edges. A minimum spanning tree is then a spanning tree with 
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minimal total cost. A minimum spanning tree is in fact the minimum-cost subgraph 

connecting all vertices, since subgraphs containing cycles necessarily have more total 

cost. Figure S3 shows the minimum spanning tree for the Spanish meadows. The star-

like structure centered at Balearic populations is evident. 
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Figure S3:  Minimum Spanning Tree based on Goldstein distance among Spanish 

meadows. This is the subgraph which connects the populations at the Spanish coast 

scale minimizing the total genetic distance along links.  

 

 

Movie S1 

Sequence of networks for the Spanish populations obtained at successive values of the 

threshold distance, thr, above which links are discarded. 
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