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Introduction 
 

This report comprises publications related to identification of communities, produced within the EDEN project. 

Here, the term “communities” loosely means subgraphs or clusters of the network, which have denser and 

stronger connections than the network has on average.The main goal has been to assess and develop methods 

which are applicable to full or very dense weighted networks or matrices of genetic distances, such as those 

resulting from individual-sample-level analysis of microsatellite data. The EDEN-specific goal has been the 

identification of genetic groups from individual-level data. Contents and main conclusions of the publications 

are outlined below. 

 

Detecting modules in dense weighted network, T. Heimo et al, J. Stat. Mech. P08007 (2008) 

This paper deals with application and generalization of the q-state Potts method (Reichardt & Bornholdt, Phys 

Rev Lett 93, 218701, 2004) to weighted and dense networks. We introduce a proper null model for optimizing 

the Hamiltonian of the method and evaluate the behaviour of its resolution limit. The Potts method is based on 

minimizing the energy of a system of spins, which interact via the network’s links. The ground state, 

corresponding to the minimum energy, is such that spins within communities are aligned. In addition, a tuning 

parameter allows changing the resolution from small to large communities. However, as we have shown earlier, 

the methods suffers from a resolution limit, such that communities below a network-size-dependent limit 

cannot be resolved. Here, our analysis indicates that the limit behaves fairly well once the networks considered 

are very dense, and weights are taken into account. 

 

Sequential algorithm for fast clique percolation, J. Kumpula et al, Phys. Rev. E 78, 026109 (2008) 

In this paper we present an algorithm and a method for applying the clique percolation community detection 

method (Palla et al, Nature 435, 815 (2005)) on weighted networks. In our method, the weighted networks are 

progressively thresholded, retaining only the strongest links (corresponding to shortest genetic distances), 

yielding a hierarchical community structure which can be understood with the help of dendrograms, resembling 

phylogenetic trees. As a side product, the algorithmic implementation is extraordinarily fast, allowing the use of 

clique percolation on networks comprising millions of nodes. 

 

Limited resolution and multiresolution methods in complex network community detection, J. Kumpula et 

al, Fluctuation and Noise Letters 7, L209 (2007) 

This paper deals with the known issue of resolution limits with global-optimization-based methods, such as the 

above-mentioned Potts method or the multiresolution method introduced by Arenas et al (Arenas et al, New 

Journal of Physics 10, 053039 (2008)). The limits of both methods are studied analytically, and the methods are 

applied to network data sets, with the result that both methods behave fairly similarly. 

 

A network perspective on the genetic population structure of seagrass Posidonia Oceanica, M. Kivelä, 

Master’s Thesis, Helsinki University of Technology, 2008. 

This thesis work deals with analysis of the P. Oceanica microsatellite data. First, proposed measures for 

defining the genetic distance between two individuals are reviewed critically, and the results are compared, 

with the outcome that different measures are required for detecting structure resulting from short- or long-time-

scale processes. Using the non-shared-alleles distance measure, a matrix of genetic distances between P. 

Oceanica samples is then constructed and subjected to two community detection methods. Due to biases in 

sampling, it is seen that the above-mentioned fast clique percolation method cannot resolve the community 

structure very well, except for the geographic split west-central-east. On the other hand, the block 

diagonalization method by Sales-Pardo et al (PNAS 104, 15224, 2007) yields a dendrogram whose highest 

levels are seen to correspond fairly well to the expected geographic division, and where a more detailed 

community structure is visible. However, the validity of this detailed structure is somewhat questionable, as the 

method produces structure even if applied on a randomized reference. 
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Abstract. We address the problem of multiresolution module detection in dense
weighted networks, where the modular structure is encoded in the weights rather
than topology. We discuss a weighted version of the q-state Potts method, which
was originally introduced by Reichardt and Bornholdt. This weighted method
can be directly applied to dense networks. We discuss the dependence of the
resolution of the method on its tuning parameter and network properties, using
sparse and dense weighted networks with built-in modules as example cases.
Finally, we apply the method to stock price correlation data, and show that
the resulting modules correspond well to known structural properties of this
correlation network.
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1. Introduction

During recent years, the network approach has proven to be a very efficient way of
investigating a wide range of complex systems [1]–[4]. In this approach, the fundamental
elements of the system are represented with nodes and the interactions between them
with links. Sometimes it is enough to consider links as ‘binary’, such that each link either
exists or not. In this case, it is assumed that the pure topology carries enough relevant
information about the system under study. However, valuable information is often lost if
interaction strengths are not taken into account. Because of this, the study of weighted
networks has recently been receiving a lot of attention. In this framework, a scalar weight
representing the associated interaction strength is assigned to each link. It is evident
that this additional degree of freedom somewhat complicates the picture; for example
generalization of existing measures is not necessarily straightforward (see, e.g., [5]). Thus
there is a need for developing new network analysis methods which focus on the weights
instead of pure topology.

The study of (weighted) networks has mostly focused on systems whose interaction
structure is inherently sparse, such as air transport networks [6, 7] and social networks
inferred from electronic communication records [8, 9]. Another approach is to filter
out interactions which are considered insignificantly weak, resulting in sparse network
representations even for systems where each element interacts with each other, i.e., systems
whose ‘natural’ representation is a full or dense weighted network. For such networks, it
is the interaction strengths themselves that carry the most significant information—the
networks are constructed on the basis of the assumption that the strongest interactions
encode the most significant properties for the system under study. This is the case for
instance with correlation-based networks, in which the weights are usually related to
correlations between the time series of some relevant activities of the nodes (see, e.g., [10]),
or distance-based networks [11], in which the weights are related to distances between the
nodes according to some relevant metric. It is evident that in this approach, setting the
proper threshold below which interactions are discarded is a non-trivial task.

doi:10.1088/1742-5468/2008/08/P08007 2
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In addition to weighted networks, the attention of network science has recently been
focusing on ‘mesoscopic’ properties of networks, i.e., structures beyond the scale of single
nodes or their immediate neighborhoods. A very important and related problem is the
detection and study of modules or communities3, i.e., groups of nodes with dense internal
connections and sparse connections to the rest of the network [12]–[17]. A number
of methods have been introduced, mostly in the context of binary networks. These
include various modularity optimization methods building on the work by Newman and
Girvan [12], the clique percolation method by Palla et al [13], and methods based on
statistical inference [18, 19]. Many methods have been generalized to deal with weighted
networks [20]–[23]; however, e.g. for the clique percolation method, networks have to
be fairly sparse in order for the method to be applicable. Regarding the modularity
optimization family of methods, it has been shown that there is an intrinsic resolution
limit [20, 24, 25]. However, a lot of attention has recently been given to multiresolution
methods [15, 21, 23, 25, 26], which allow investigating modular structure at various levels
of coarse-graining.

In this work we concentrate on investigating modular structure in dense weighted
networks, using a weighted version of the q-state Potts method by Reichardt and
Bornholdt (RB) [15, 26]. This method is closely related to modularity optimization
methods, and hence there is a resolution limit [20]. However, the method contains a
tuning parameter which allows changing this limit. Although the method was originally
introduced in the context of sparse, binary networks, edge weights can readily be taken
into account [26]. In fact, once this is done, the networks to be analyzed no longer need
to be sparse—hence, for example when studying stock market correlations, all correlation
matrix elements can be taken into account and no thresholding is necessary.

We begin by discussing the weighted RB method, deriving the required weighted null
model, and then investigate the effect of the tuning parameter on the resolution of the
method for networks with modular structure encoded in the weights. Then, we apply the
method to a correlation-based network of stock return time series, i.e., a full correlation
matrix, whose modular structure has been earlier investigated using a wide variety of
approaches (see, e.g., [10], [27]–[29]). It should be noted here that the multiresolution
method recently introduced by Arenas et al [21] bears some similarity with the Potts
method (see [25]); thus for comparison we apply it to the same data. Finally, we draw
conclusions.

2. The RB method

2.1. Introduction

Let us begin with a short introduction of the community detection method introduced by
Reichardt and Bornholdt (RB) [15, 26]. In this method, each node is assigned to exactly
one module, and the module indices of nodes are considered as spins of a q-state Potts
model. The goal is to assign nodes to modules in such a way that the energy of the system
is minimized. In the global optimum, groups of nodes with dense internal connections
should end up having parallel spins. The Hamiltonian for the system is defined as

Hu = −
∑

m

(lmm − γ[lmm]pij
), (1)

3 In this paper, these two terms will be used interchangeably.

doi:10.1088/1742-5468/2008/08/P08007 3
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where lmm is the number of links inside module m, [lmm]pij
is the expected number of

links inside module m given the null model pij, and γ > 0 is an adjustable parameter.
The summation is over all modules. The null model pij denotes the probability that a
link would exist between nodes i and j if the network was entirely random, i.e., in the
absence of modular structure. Essentially, there are two possible choices for the null model:
constant pij = p, which corresponds to Erdös–Rényi networks [30], and the configuration
model [3], in which the degree sequence of the original network is retained but all links are
randomly rewired, such that all correlations are lost to the extent allowed by the degree
sequence.

Next we briefly review the derivation of [lmm]pij
for the configuration model. Imagine

that all the links in the network are cut in half, such that nodes have stubs (i.e., half-links)
connected to them. Then these stubs are to be randomly reconnected to form full links. If
two such stubs are randomly picked, the probability that both connect to nodes in module
m is simply K2

m/K2, where K is the degree sum of the network4 and Km the degree sum
of nodes in module m. Since there are K/2 pairs of stubs, we get

[lmm] =
K2

m

2K
. (2)

Correspondingly, the probability that the two stubs to be connected belong to different
modules, say m and n, is 2KmKn/K2. Thus, the expected number of links between
modules m and n reads

[lmn] =
KmKn

K
. (3)

Let us now address the question of weighted networks. It seems natural that
equation (1) transforms to

Hw = −
∑

m

(wmm − γ[wmm]pij
), (4)

where wmm and [wmm]pij
denote the sum of weights and expected sum of weights of

links inside module m, respectively. Again, there are essentially two ways to define
[wmm]pij

. The approach taken in [20] is to calculate the expected number of links
using the configuration model and to assume that each link has average weight, that
is, [wmm] = 〈w〉[lmm]. However, here we take another approach, which is analogous to
the above derivation for the unweighted case and based on the ideas presented in [31]. In
weighted networks, the strength si of node i is defined as the sum of the weights of the links
attached to it. Consider dividing the strength of each node into small ‘stubs’ of weight ds
such that node i has si/ds stubs emerging from it and start randomly connecting pairs of
these stubs. This process is analogous to the above unweighted case, and as a result the
expected sums of weights of the links inside module m and between modules m and n are

[wmm] =
S2

m

2S
, and [wmn] =

SmSn

S
, (5)

respectively, where S =
∑N

i=1 si is the strength sum of the network and Sq the strength
sum of module q. When all links have weight wij = 1, the above equations reduce to
equations (2) and (3).

4 The degree sum of the network is defined by K =
∑N

i=1 ki, where ki is the degree of node i.
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Figure 1. (a) A ring-like network, consisting of Nb cliques, each containing of Nc

nodes. Link weights wi within modules equal unity, whereas modules are joined
by links of weight wb ≤ 1. (b) The weighted RB method can merge consecutive
cliques to larger modules, depending on values of the network parameters and
the tuning parameter γ. The hierarchical structure is for illustrative purposes
only. In general, the RB method does not yield hierarchical modules.

2.2. Resolution of the weighted RB method for sparse and dense networks

The RB method can be viewed as a general framework for community detection [26],
which for the unweighted case includes the modularity optimization method as a special
case (γ = 1 and the configuration model as the null model). Recently, it was shown
that the resolution of modularity optimization methods is intrinsically limited [24]. In
particular, in large networks small ‘physical’ communities cannot be resolved and thus
there is a lower limit to the size of communities which can be detected by the method.
This limit depends on the number of links in the network and is also inherited by the
more general RB method [20]. However, by changing the parameter γ, the resolution of
the method can be tuned such that small values yield large modules and vice versa. This
provides a clear advantage over ‘traditional’ modularity optimization, which is restricted
to a single resolution.

We now address the issue of resolution of the weighted RB method, beginning with
a weighted modular network which is sparse, that is, whose average degree 〈k〉 � N .
Consider a simple case, where the N nodes are arranged into modules of constant size
Nc, so that the number of such modules is Nb = N/Nc. Let the modules form a ring-like
structure, as illustrated in figure 1, and let each module be a fully connected clique. Let
the internal links within cliques have weight wi = 1, and successive modules be connected
by a single link of weight wb, where wb ≤ 1. This presents perhaps the simplest possible
modular structure for a weighted connected network.

The community structure found by the weighted RB method corresponds to the
global minimum of the Hamiltonian (or energy) defined in equation (4). Depending of the
network parameters Nb, Nc, and wb as well as the tuning parameter γ, this structure may or
may not correspond to the built-in modules. Let us consider two ways to group the built-
in modules into communities: the first one is the ‘natural’ grouping in which each built-in
module is identified as a single community. In the second case, we take two successive
built-in modules and consider them merged, that is, identified as one community. Other

doi:10.1088/1742-5468/2008/08/P08007 5
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built-in modules are still considered as separate communities exactly as in the first case.
Clearly, if the second grouping has smaller energy (4) than the first one, the resolution
of the method is limited. A straightforward calculation shows that this is equal to the
requirement

wmn > γ[wmn] = γ
SmSn

S
, (6)

where m and n are the built-in modules to be merged, S =
∑N

i=1 si is again the
strength sum of the network, and Sq the strength sum of module q. Now, wmn = wb,
Sm = Sn = Nc(Nc − 1) + 2wb, and S = NbSm. Plugging these into equation (6) yields the
merging condition for the example network:

wb > γ
1

Nb
(N2

c − Nc + 2wb). (7)

Now, let the network size N increase while the module size Nc remains constant.
Then, as Nb = N/Nc increases, larger and larger values of γ are needed for obtaining
the built-in modules. Increasing wb makes merging easier, as expected. For wb = 1,
equation (7) yields the resolution limit for the similar unweighted network studied in [20].

Let us now move on to a more interesting case where the network in question is
fully connected, i.e., links exist between each node, and the modular structure is purely
encoded in the weights. Perhaps the simplest possible structure for a fully connected
network with modules is the case where Nb modules each consisting of Nc nodes are
constructed such that inside the modules the links have weight wi = 1 and links between
nodes in different modules have weight wb (0 < wb ≤ 1); see figure 2. Like in the
above analysis for the sparse weighted network, we again consider two ways to group
the built-in modules to communities: the ‘natural’ grouping and the one in which two
built-in modules are considered as a single module. Again, the method prefers the second
grouping over the natural one if it yields smaller energy (equation (4)). The condition
for this is again given by equation (6), but now we have wmn = N2

c wb and Sq = Ncsi,
where si = Nc − 1 + (Nb − 1)Ncwb denotes the (constant) strength of the nodes. Thus,
equation (6) is equivalent to

N2
c wb > γN2

c

[
1 − 1/Nc

Nb

+

(
1 − 1

Nb

)
wb

]
≈ γN2

c wb, (8)

where the approximation is valid when Nb is large. In this case, equation (8) further
simplifies to γ < 1, where it should be understood that the specific merging value γ = 1
appears as a result of the simple structure of the example case. With a more general
scope, the expected weight between modules [wmn] ≈ N2

c wb is independent of the number
of modules Nb, i.e., network size. Thus, merging is solely controlled by γ. This is different
from the sparse network case discussed above, where increasing system size eventually
triggers merging as the expected number and the total weight of links between modules
decreases.

Finally, we analyze the effects of a single strong link between the modules in the
latter example case. On the basis of the above analysis, merging happens if the total
weight between the two modules exceeds γ[wmn], which is again of the order of γN2

c wb.
For sufficiently large Nc, the expected weight is so large that adding one strong link is
not enough for merging to occur. Smaller modules are merged more easily. However, the
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Figure 2. Left: a network consisting of Nb = 4 blocks each having Nc = 10
nodes. Links inside blocks have weight wi = 1 and nodes in different blocks are
connected with links of weight wb = 0.1. On the right is illustrated the effect of
γ on the modular structure found. Large values yield the physical communities
while for small values the communities appear as one large module. If the number
of blocks Nb is large enough, the network size does not affect the γ values where
merging happens.

resolution limit still depends only weakly on the number of modules, i.e., system size.
This means that sweeping γ can be used to probe communities of different sizes, and the
suitable range of γ values is practically independent of the system size.

These considerations show that the resolution of the weighted RB method does
not necessarily decrease when dense networks grow in size, unlike for sparse networks.
However, for practical purposes, issues such as the distribution of weights both within and
between the blocks is expected to affect the actual resolution, and the above examples
should be viewed as illustrative only.

3. Example application: modules in a stock correlation network

As a real-world example, we apply the weighted RB method to a correlation-based
network of stock return time series. Networks of this type are of special interest as
the correlations between asset returns are the main input in the classical and still widely

doi:10.1088/1742-5468/2008/08/P08007 7
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used Markowitz portfolio optimization theory [32]. Correlations of stock returns were
first studied from the network point of view by Mantegna [27], who defined a correlation-
based metric and was consequently able to identify modules that make sense also from
the economic point of view by using the maximal spanning tree. This work has been
extended by Bonanno et al [28, 33, 34] and Onnela et al [35, 36], with the overall conclusion
that there is cluster structure which corresponds well to economic sectors. Recently, the
structure of correlation-based stock interaction networks has also been studied with the
weighted version of the clique percolation method [22] and by spectral and thresholding
analyses [10, 29, 37, 38].

To construct our network, we use a data set consisting of the daily closing prices of
N = 116 NYSE-traded stocks from the time period from 13 January 1997 to 29 January
2000.5 We estimate the equal time correlation matrix of logarithmic returns by

Cij =
〈rirj〉 − 〈ri〉〈rj〉√

[〈ri
2〉 − 〈ri〉2][〈rj

2〉 − 〈rj〉2]
, (9)

where ri is a vector containing the logarithmic returns of stock i. Since there is a small
number of elements of C which are slightly negative, we define the weights of our network
by

Wij = |Cij| − δij , (10)

which can be justified by interpreting the absolute values of correlations as measures of
interaction strength without considering whether the interaction is positive or negative.

Here, we take a multiresolution approach to the problem of detecting modules in
the above matrix, and sweep the value of γ to obtain the modules of W at multiple
levels of resolution. For each value of γ, we assign nodes into modules such that the
energy (4) is minimized. Evidently, exploring all possible configurations is computationally
impossible, so some approximative method has to be employed. The choice of method
naturally depends on the system size, and for very large systems, greedy optimization
methods [39, 40] which directly look for local minima might be the only solution. For our
case, the system is not very large, and we have chosen the simulated annealing approach,
using single-spin flips as well as block flipping as the elementary Monte Carlo operations.
It should be noted, however, that it cannot be guaranteed that the energy minimum
obtained is a global one. For the RB method, there is no way around this problem.

First, we have investigated the number of modules as a function of γ (see figure 3(a)).
For γ � 0.8, all nodes are assigned to a single module. When γ is further increased,
the number of modules starts to rapidly increase, until finally each module corresponds
to a single node. It is worth noting that no plateaus are seen in the graph, except for
the trivial case of γ � 0.8. In [21], using a related multiresolution method, such plateaus
were shown to exist for test-case networks, corresponding to built-in hierarchical modules.
Plateaus would hence yield ‘natural’ choices of the tuning parameter. Their absence in
figure 3(a) means that there is no range of γ which would correspond to a stable module
configuration. However, stability of the number of modules only gives partial insight into
the stability of the modular structure. Especially for real-world networks with modules of
different sizes and internal weights, changes in this number may only reflect e.g. splitting

5 The length of the time series is 1000 trading days.
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Figure 3. The number of modules (a) and the sizes of the two largest modules
(b) as a function of γ.

of small, weak modules, while the strongest modules remain more or less stable when γ
is increased. This appears to be the case for our stock interaction network. Panel (b) of
figure 3 depicts the sizes of the two largest modules as a function of γ. The sizes remain
almost constant for an interval of approximately γ ∈ [1.4, 3], and thus the increase in the
module number can be attributed to splitting of smaller modules.

Next, we turn to the modules themselves. In order to visually compare the detected
modules with known structural features of the correlation matrix investigated we have
utilized the maximal spanning tree (MST) method. The MST of a network or a matrix is
a tree connecting all the N nodes with N −1 links, such that the sum of the link weights is
maximized. Earlier, it was shown that for stock correlation matrices, branches of the MST
correspond well to business sectors or industries for the NYSE [27], [33]–[36] as well as
FTSE [41]. The typical way to categorize stocks into business sectors is to use the Forbes
classification [42]. Panel (a) in figure 4 displays the MST for the stock network, together
with the Forbes classification. For comparison, we first set γ = 1 (figure 4(b)), and color
the nodes according to modules detected by the RB method for the full correlation matrix
as above. The value γ = 1 is of particular interest, as in this case the Hamiltonian of
equation (1) is equivalent with the weighted version of modularity [12]. For this value, four
modules of sizes 13, 34, 34 and 35 are found. For each module, the majority of member
nodes are also connected in the MST, and there is a correspondence between the MST
branches and the modules. The smallest module corresponds very well to the ‘Energy’
sector in the Forbes classification, and the other modules roughly to combinations of
different sectors. It should be noted here that the Forbes classification is an external one,
i.e., it is not based on empirical observations on stock correlations, and thus some Forbes
sectors are also relatively disjoint in the MST of figure 4(a).

Let us now change the resolution of the RB method by moving towards larger values
of γ. Panel (c) of figure 4 displays the modular structure obtained with γ = 1.4, i.e., at the
onset of the ‘plateau’ regime of the two largest module sizes. Only modules of size larger
than two are depicted by different colors, while the rest of the nodes are indicated by open
symbols. An immediate observation is that the modules correspond remarkably well to
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http://dx.doi.org/10.1088/1742-5468/2008/08/P08007


J.S
tat.M

ech.
(2008)

P
08007

Detecting modules in dense weighted networks with the Potts method

Figure 4. (a) The maximal spanning tree and business sectors according to
Forbes [42]. (b) The maximal spanning tree and the modular structure for γ = 1.
Each color corresponds to a module. (c) The maximal spanning tree and the
modular structure for γ = 1.4. Modules of size larger than 2 are depicted in
different colors and the rest of the nodes by empty symbols.

the different branches of the MST and very well to the Forbes classification. Increasing γ
further splits the modules into smaller ones: for γ = 2 the number of modules is already 58
and thus their average size is only 2. The largest modules, corresponding to the ‘Energy’
sector and the ‘Electric Utilities’ industry, are the last ones to break at around γ ≈ 3
and γ ≈ 4, respectively. Interestingly, the ‘Energy’ module seems to contain a strong
submodule of four nodes. This is also seen as a plateau in the graph depicting the size
of the second-largest component (figure 3(b)), which indicates that large values of γ can
also yield useful information on the modules.

Finally, we study the correspondence between the modular structure obtained with
the RB method and the Forbes classification into business sectors in a more quantitative
way. We use two measures defined in [15]: the sensitivity defined as the fraction of pairs of
nodes classified into the same Forbes sector that are assigned to the same module by the
RB method and, correspondingly, specificity as the fraction of pairs of nodes belonging
to different sectors that are assigned to different modules by the RB method. Sensitivity
and specificity are depicted in figures 5(a) and (b), respectively. The sensitivity curve
shows a sudden increase in the interval γ ∈ [0.8, 1.8]. The reason for its low initial value
is the assignment of all nodes to a single module, as discussed above, and the increase
corresponds to modules splitting into smaller units which correspond well to the Forbes
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Figure 5. The sensitivity (a) and the specificity (b) of the modular structure
with respect to the Forbes classification of business sectors [42] as a function of
γ. The solid line is a guide to the eye.

classification. The high value of sensitivity for large γ means that the relatively small
modules given by the RB method are proper subsets of the Forbes business sectors. The
specificity curve shows a decreasing trend, but its values still remain relatively high. This
trend is explained by an increasing number of small modules (including modules consisting
of one node only), such that nodes which belong to a common sector appear in different
modules. Overall, the above results indicate that the modular structure detected by the
weighted RB method corresponds well to the Forbes classification for a wide range of γ,
and the small modules obtained at large γ seem to be valid submodules of larger ones.

For comparison, we have also carried out the above analysis using the recently
introduced weighted multiresolution method of Arenas et al [21]. This method resembles
the Potts approach; however, the tuning parameter γ is replaced by the parameter r,
which can be interpreted as representing the weight of a self-link added to each node.
The number of modules, the sizes of the two largest modules, the sensitivity and the
specificity as functions of the tuning parameter r are depicted in figure 6. Comparison
with figures 3 and 5, in which the same results for the RB method are shown, suggests
that for the correlation matrix analyzed here, the AFG and RB methods behave in a very
similar manner.

4. Conclusions

Here we have presented, analyzed, and applied a weighted version of the q-state Potts
model approach by Reichardt and Bornholdt [15], introducing a well-motivated null model
for expected weights within modules. Our target has been to investigate the modular
structure of dense weighted networks such that instead of the topology, the link weights
determine the modules. In contrast to conventional approaches, where weights considered
insignificant are filtered out, ours has the target of utilizing all information contained in
the weight matrix. The weighted RB model fulfills this criterion, as it can equally well be
applied to sparse and to dense networks. In addition, it contains a parameter that allows
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Figure 6. The number of modules (a), the sizes of the two largest modules (b),
the sensitivity (c) and the specificity (d) as functions of r with the AFG method.
The solid line is a guide to the eye.

tuning its resolution, which is useful for studies of nested community structures. Analysis
of the resolution limit of the method has shown that for simple example cases, dense
modular networks behave differently from sparse ones, as the resolution is only weakly
dependent on the network size. As a practical application, we have used the method
in analysis of the modular structure of a stock correlation matrix. Our results indicate
that on varying the tuning parameter value, the method is able to detect modules which
correspond to relevant business sectors, as well as substructure inside these modules. Thus
it turns out that the weighted Potts method provides a feasible approach to community
detection in dense networks.
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Sequential algorithm for fast clique percolation
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In complex network research clique percolation, introduced by Palla, Derényi, and Vicsek �Nature �London�
435, 814 �2005��, is a deterministic community detection method which allows for overlapping communities
and is purely based on local topological properties of a network. Here we present a sequential clique perco-
lation algorithm �SCP� to do fast community detection in weighted and unweighted networks, for cliques of a
chosen size. This method is based on sequentially inserting the constituent links to the network and simulta-
neously keeping track of the emerging community structure. Unlike existing algorithms, the SCP method
allows for detecting k-clique communities at multiple weight thresholds in a single run, and can simultaneously
produce a dendrogram representation of hierarchical community structure. In sparse weighted networks, the
SCP algorithm can also be used for implementing the weighted clique percolation method recently introduced
by Farkas et al. �New J. Phys. 9, 180 �2007��. The computational time of the SCP algorithm scales linearly
with the number of k-cliques in the network. As an example, the method is applied to a product association
network, revealing its nested community structure.

DOI: 10.1103/PhysRevE.78.026109 PACS number�s�: 89.75.Fb, 89.75.Hc

I. INTRODUCTION

Over the last decade, complex networks have become a
standard framework in the study of complex systems �1,2�.
The simplicity of the network representation, where the in-
teractions and interacting elements are mapped to links and
nodes, respectively, facilitates its use on a number of sys-
tems, ranging from human societies to biological systems.
One prominent feature of complex networks is related to
their mesoscopic properties. Networks often display modular
structure, i.e., are structured in terms of modules or commu-
nities, which are, in general, sets of densely interconnected
nodes. Such communities are often closely related to func-
tional units of the system, for example, groups of individuals
interacting with each other in society �3–6� or functional
modules in metabolic networks �7–9�.

The problem of detecting communities in complex net-
works has received a lot of attention over the last few years.
This problem is twofold: first, there is no unique way to
rigorously define what constitutes a community. For any
definition, several choices have to be made: whether commu-
nities are defined using local or global network properties,
whether nodes can participate in several communities, and
whether the definition allows for weighted networks and
nested hierarchy of communities. Second, any definition is
useful in practice only if it can be reformulated as an algo-
rithm which scales well enough to allow processing net-
works of large enough size. As a result, a large number of
community definitions and their algorithmic implementations
have been proposed over the recent years �10–15�; for a re-
view see Ref. �16�.

In this paper we focus on a fast algorithmic implementa-
tion of the clique percolation �CP� method, originally intro-
duced by Palla et al. �9�. The CP method is deterministic and

it is based solely on local topological properties, defining a
k-clique community as a set of nodes belonging to adjacent
k-cliques. This allows for overlapping communities, i.e.,
nodes having multiple community memberships. The CP
method has earlier been successfully applied to various com-
munity detection problems: detection of protein communities
related to cancer metastasis �17�, analysis of communities in
coauthorship, word association, and protein-interaction net-
works �9�, and time evolution of social groups �6�. Contrary
to existing implementations �18�, which detect k-clique com-
munities for all values of k by first finding the maximal
cliques by an exponentially scaling algorithm �9�, we focus
on rapid detection of communities for a chosen value of k.
Our sequential clique percolation �SCP� algorithm is based
on sequentially inserting links to the network and keeping
track of the emerging community structure. It has specifi-
cally been designed for weighted networks containing hier-
archical communities which are reflected in the link weights.
When links are inserted in decreasing order of weight, the
algorithm allows for detecting k-clique communities at cho-
sen threshold levels in a single run and simultaneously pro-
duces a dendrogram representation of hierarchical commu-
nity structure. In addition, the algorithm can be used for very
fast community detection for unweighted networks.

This paper is structured as follows. First, we present our
algorithm for the simplest, unweighted case, and discuss its
scaling properties. We then move on to detecting nested
communities in weighted networks, applying the algorithm
to a product association network generated from data on sell-
ers and products on an online auction site. Finally, we dis-
cuss a variation of the algorithm which is based on ordering
k-cliques according to their weighted properties, and present
our conclusions.

II. THE SCP ALGORITHM

Let us begin by defining k-cliques and k-clique commu-
nities �9,19�: A k-clique is a set of k nodes which are all*jkumpula@lce.hut.fi
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connected to each other. A k-clique community, or
k-community, is a set of nodes which can be reached by a
series of overlapping k-cliques, where overlap means that the
k-cliques share k−1 nodes.

It should be noted that 2-cliques correspond to pairs of
nodes connected by single links and 1-cliques to single
nodes. Given a network �, the goal is then to find the
k-communities defined as above. In our case, we restrict our-
selves to some specific values of k. Usually choosing k=3 or
k=4 yields useful information, and currently these values of
k have yielded, to our knowledge, the most relevant commu-
nities in practical applications �6,9,17,20�. Our algorithm is
based on detecting and storing k-communities as they
emerge and consolidate when links are sequentially inserted
into the network. One can think of the process as first “re-
moving” each link l from the network �, and then inserting
them back one by one. For unweighted networks, the links
can be inserted in any order, whereas for weighted networks,
it may be desirable to sort the links by weight.

Our algorithm for detecting k-communities consists of
two phases: The first phase of the algorithm detects k-cliques
which form when a link is inserted. These are then fed to the
second phase, which keeps track of formation and merging
of k-communities by processing the k-cliques found. The two
parts of the algorithm are described in detail below.

A. Phase I: Detecting the k-cliques

The first part of the algorithm involves detecting k-cliques
which are formed when a link is inserted into the network.
Suppose now that the inserted link connects nodes vi and v j
�see Fig. 1�. The minimum requirement for a new k-clique to
form is that nodes vi and v j both have degree of at least
k−1. If this is the case, the algorithm proceeds by collecting

all nodes that are neighbors of both nodes Nij =Ni�N j,
where N denotes neighborhood. Now, when the link lij is
added, each �k−2�-clique contained in the set Nij will give
rise to a new k-clique. Therefore, all newly formed k-cliques
are found by detecting all the �k−2�-cliques in the Nij. For
commonly used small clique sizes, this is very fast: for
3-cliques, �k−2�-cliques are single nodes, while for k=4, all
connected pairs of nodes in Nij give rise to a new 4-clique.
Next the k-cliques detected as above are fed one by one into
the second phase of the algorithm.

B. Phase II: Detecting the k-communities

The second phase of the algorithm detects and keeps track
of k-communities which form and merge when new k-cliques
are input from the first phase. Because a k-community is
defined as a set of nodes which all can be reached by a series
of overlapping k-cliques, the crucial issue here is the efficient
detection of overlap between k-cliques. A naive approach
would be to search for shared sets of k−1 nodes between the
newly input clique and all existing cliques. However, the
required computational effort makes this approach unpracti-
cal. Instead, we take advantage of the sequential nature of the
process by “locally” detecting possible overlap of each new
k-clique with existing k-communities and by updating the
community structure accordingly.

Let us begin by noting that the k-community structure of
a network can be represented by a bipartite network, where
the two types of nodes represent k-cliques and
�k−1�-cliques. In this network, a link exists between two
nodes of different type if the k-clique contains the
�k−1�-clique as a subclique. This is illustrated in Fig. 2. The
usefulness of this representation becomes apparent in the fol-
lowing: each connected component in this bipartite network
corresponds to a k-clique community, because by definition
k-cliques belonging to the same community are connected
through shared �k−1�-cliques. Furthermore, connected com-
ponents of the unipartite projections of the bipartite network
�21� similarly correspond to k-clique communities. In the
following, we focus on the �k−1�-clique projection of this
bipartite network. We denote the network resulting from this
projection by �*. In this unipartite network, nodes v* repre-
sent the �k−1�-cliques of �, and links l* exist between nodes
which are subcliques of the same k-clique.

For the sake of clarity, we will first present a “physical”
interpretation of phase II of the algorithm, and then discuss
the algorithmic implementation where certain shortcuts can
be made. Similarly to phase I, where the original network �
is reconstructed link by link, phase II of the SCP algorithm
sequentially builds up �* from the k-cliques brought forward
from phase I. At the same time, it keeps track of the con-
nected components of �* �see Fig. 2, panels �c� and �d��.
These correspond to k-clique communities. When a new
k-clique is input from phase I, its constituent �k−1�-cliques
are first extracted; obviously there are always k of such sub-
cliques. Each of these �k−1� cliques corresponds to a node in
�*. Some of these nodes may already be present, if the cor-
responding �k−1�-cliques have been handled earlier as part
of another k-clique; if not, they are created at this stage.

FIG. 1. �Color online� Schematic illustration of the process for
detecting the k-cliques a newly inserted link completes. The dashed
line depicts the new link, inserted between nodes vi and v j. The
common neighbors of nodes vi and v j are Nij = �vm ,vn ,vp ,vq�. For
detecting newly formed 4-cliques, all pairs of nodes in Nij are
checked to see if they are connected, that is, if they form a 2-clique.
Each 2-clique in the set gives rise to a 4-clique, so in total the link
lij will generate three 4-cliques. In the case k=5, only one 3-clique
is found, which contains the nodes vm, vn, and vp. It will give rise to
a single 5-clique including these nodes in addition to vi and v j.
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Finally, links are created between members of this set of k
nodes, and resulting changes in the connected component
structure of �* are recorded.

In the algorithmic implementation, things can be done
somewhat more efficiently, resembling techniques used in
link percolation. The actual network �* does not need to be
constructed, as it is enough to keep track of its connected
components, i.e., the component indices of its nodes v*. This
is equal to link percolation in �*, which can be implemented
for example with disjoint-set forests �22�. At this stage it is
enough to ensure that all �k−1�-clique-nodes corresponding
to the new k clique are marked to belong to the same com-
ponent �the new �k−1�-cliques and their links may either
form a new connected component, merge with an existing
component, or join together at most k existing components�.

The above process is then repeated for each k-clique input
from phase I. Finally, once all links have been inserted
�phase I� and the subsequently formed k-cliques handled
�phase II�, the k-communities of the original network � can
be read from the component indices of v*, assigning nodes
of � to their corresponding communities.

In theory, it would also be possible to keep track of the
connected components of the whole bipartite network or al-
ternatively project the bipartite network to k-cliques instead
of �k−1�-cliques. Both representations contain the same con-
nected components and would thus yield the same k-clique

communities. However, the former alternative is unnecessar-
ily complicated as it involves nodes of two types. The latter
implementation is not as computationally effective as the
current choice in cases where a newly inserted k-clique over-
laps with a large number of existing k-cliques.

C. Scaling of the algorithm

Let us next discuss the performance of the SCP algorithm,
before moving on to its application to weighted network
analysis. Obviously, the computational time required to pro-
cess a network depends on its properties; here, we wish to
investigate the performance as a function of network size and
the number of k-cliques contained in the network. To do this,
we have applied the SCP algorithm on three types of net-
works with adjustable sizes. The first test case, introduced by
Girvan and Newman �3� �GN�, contains built-in communities
and has often been used for similar purposes. The GN net-
works used here consist of groups of 32 nodes, where each
node has on the average 12 links to nodes of the same group
and 4 links to other groups. The network size N is varied by
changing the number of such groups. The second type of
networks �WSN� is generated using a recently published
model of weighted social networks with communities �23�,
using parameter values similar to the original reference. As
the third type, we have used coauthorship networks based on
the cond-mat �CM� archive, constructed similarly to, e.g.,
Ref. �24�. However, in order to vary the network size, we
have used time windows of varying length, such that two
authors are connected if they have published a joint paper
during the time window. It should be noted that although the
WSN networks are inherently weighted, and the CM net-
works can also be considered such, here we consider binary
versions of both types for the performance analysis.

Results in Fig. 3 show that the computational time of the

FIG. 2. �Color online� Illustration of the algorithm for detecting
k-clique communities in a simple example network. Here, k=3. �a�
The original network � consists of three 3-cliques labeled A, B, and
C. 2-cliques, i.e., nodes connected by single links, are labeled with
lower case letters. �b� Bipartite network presentation of the clique
structure. Note that in the bipartite network, the 3-cliques B and C,
which form a 3-clique community, are connected by the shared
2-clique f . Clique A forms another 3-clique community. �c�
3-cliques detected by the first part of the algorithm as links are
sequentially inserted into the network. Each new k-clique is denoted
by dark nodes whereas nodes associated with existing k-cliques
appear gray. �d� Corresponding updates to the �k−1�-clique network
�* as a result of the second part of the algorithm. k-clique commu-
nities correspond to connected components of this network �shaded
areas�.

No. No. No.

No.No.No.

FIG. 3. �Color online� Computation time of the algorithm for
three values of k, as a function of the number of k-cliques �upper
row� and network size �lower row�. Symbols denote different test
networks: GN ���, WSN ���, and CM ���, see text for details. The
solid line is a linear reference. For comparison, we have also plotted
the computational time of the CFINDER 1.21 algorithm for the GN
networks ���. Note that CFINDER always processes all values of k.
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SCP algorithm grows practically linearly as a function of the
number of k-cliques for all networks. This is as expected,
because the computational time of the algorithm is domi-
nated by the process of detecting k-cliques and processing
them for overlap, such that each k-clique is processed exactly
twice. This is also reflected in the network size dependence
of the required computational time for both types of model
networks �GN, WSN�. For these networks the local structure
remains essentially unchanged as the network grows and it
appears that the number of k-cliques grows linearly with N.
However, for the CM networks, the computational time
grows faster than linearly as a function of network size. This
is because the CM network is a projection of a bipartite
author-publication network containing large cliques that
grow in size when N increases. The problem is, as pointed
out by Palla et al. �9�, that the number of subcliques of size
k within a clique of size s is � s

k �. In the limit s�k this leads
to

�s

k
� 	

sk

k!
. �1�

Hence for large s, the number of k-cliques grows as kth
power of s, meaning that for networks containing large
cliques the SCP method performs best for rather small values
of k. For example, when k�10 the analysis of the largest
CM networks becomes extremely slow with the SCP method.
However, when very large cliques are not abundant in the
network under investigation, the SCP algorithm is very fast
even for networks of large size. For example, detecting
4-clique communities in a mobile phone call network having
approximately four million nodes and six million links �25�
takes approximately one minute on a standard desktop com-
puter. Thus, for networks where cliques are on the average
fairly small, the main practical limitations of this algorithm
seem to be related to the memory consumption as it requires
keeping all �k−1�-cliques of the network in memory.

Finally, let us compare the performance of the SCP algo-
rithm and the existing method �CFINDER 1.21, �9��. Evidently,
this comparison is somewhat complicated, as CFINDER simul-
taneously processes all clique sizes, whereas the SCP algo-
rithm is by construction limited to a single value of k. Nev-
ertheless, summing up the processing times for all values of
k, we have observed that for the GN network, the processing
time of the SCP algorithm scales linearly with network size,
whereas CFINDER 1.21 appears to scale as N2 �see Fig. 3�.
However, for denser networks, such as the CM network, the
comparison becomes somewhat meaningless as both meth-
ods become extraordinarily slow. This is due to the very
large number of k-cliques as discussed above. It should be
noted here that the unpublished beta version, CFINDER 2.0b,
appears to scale far better than CFINDER 1.21 and seems to be
able to deal with very large cliques. However, the key
strength of the SCP algorithm is its speed in weighted net-
work analysis: it is able to process multiple weight thresh-
olds in a single run �see Sec. III A below�. With the earlier
method, this quickly becomes unfeasible, as the networks
corresponding to each threshold have to be separately input
and analyzed. Thus, even if the processing time of both

methods would be exactly the same for a single network,
obtaining the k-community structure for 100 weight thresh-
olds would be 100 times faster with the SCP algorithm. An-
other important difference is the inherent ability of the SCP
method to produce a dendrogram of nested k-communities;
this feature does not exist in earlier implementations �again,
see Sec. III A below�.

III. SCP FOR WEIGHTED NETWORKS

A. Thresholding and nested communities

Let us move on to weighted networks, where the concept
of community structure becomes somewhat more compli-
cated. Perhaps only for the very simplest cases, where the
networks are sparse, weights can be disregarded, such that
communities are associated with the pure topology of the
network. However, this is usually not feasible, as weighted
networks can be rather dense, even to such an extent that the
topology no longer matters, as any modular structure is en-
coded in the link weights only. This is the case, for example,
in stock interaction networks �26�, whose natural representa-
tion is a weight matrix with only nonzero elements.

For such networks, one is essentially left with two
choices: the first is to threshold the network, such that links
whose weights are considered insignificantly small are re-
moved and communities in the resulting sparse network are
detected. It is evident that choosing the right threshold is a
nontrivial task; in fact, for many cases it may be better to
take a multiresolution approach, by investigating the result-
ing community structure for a range of thresholds. Another
option is to consider the weights directly when defining what
constitutes a community, and to apply a method which is
based on this definition �20,26�.

In the original formulation of the clique percolation algo-
rithm, Palla et al. suggested a rule for choosing a weight
threshold w* for the network, such that the resulting
k-community structure would be as diverse as possible �9�.
More specifically, w* is chosen such that the largest commu-
nity is twice the size of the second largest one, i.e., below the
percolation threshold where a giant k-clique community ap-
pears. For the original implementation, the algorithm had to
be run from the beginning for each threshold level. One of
the benefits of our approach is that it allows for obtaining
k-communities at any point of the process of adding links,
which is just thresholding done in reverse: If the links of the
original network � are sorted and processed in descending
order of weight, the algorithm yields for each link the
k-community structure of � thresholded by the weight of the
link. This is very useful for selecting the threshold, as all
threshold values can be processed in a single run. Note that
for dense networks, sweeping through the entire range of
weights is not needed: the algorithm can be stopped before
�or immediately after� communities are entirely “smeared
out” by a giant community. Stopping the algorithm in time
can greatly reduce the workload in dense networks as usually
only a small fraction of all links need to be added before the
percolating component is found, after which adding more
links does not increase the number of nodes in the commu-
nities, but only makes the community denser in cliques.
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However, by focusing on a single threshold weight, valu-
able information of the community structure contained in the
correlations between weights can be lost. Often, the modular
structure of networks is inherently hierarchical—denser and
stronger communities are nested inside weaker ones, which
may further be embedded inside even weaker ones
�15,27–29�. It is then natural to investigate this nestedness by
considering the development of the community structure
when the weight threshold is swept through the range of
interest. Evidently, this requires book-keeping of the emer-
gence and merging of communities as the threshold is pro-
gressively lowered. For the SCP algorithm, this book-
keeping is inbuilt: all necessary information can directly be
recorded in phase II of the algorithm. In particular, it is easy
to store when a k-community appears, which nodes belong to
it, how its size grows as new k-cliques join it, and when it
merges with other k-communities. It should be stressed here
that this is a genuine advantage: separately detecting the
community structure for each threshold and then tracking the
formation and merging of communities would be very diffi-
cult and time consuming.

This information on the nested community structure is
best visualized with a dendrogram, which is a common pre-
sentation format in agglomerative community detection �see,
e.g., Ref. �29��. In a dendrogram, horizontal lines correspond
to communities, and a branching of the lines denotes com-
munities merging. Choosing a single weight threshold would
correspond to taking a vertical slice of the dendrogram. Fig-
ure 4 shows two examples of the nested community structure
within a product category network, for k=3 and k=4. This
network is constructed from online trading data, downloaded
from the Finnish auction website Huuto.net. In this network,
nodes correspond to product categories �N=345�, and the
weights of links connecting two categories to the number of
individuals who have been trading in both of them. This
network is very dense, the number of links is 52536, corre-
sponding to a link density �=0.89, and thus the network can
be considered as a suitable test case for the evolution of
community structure while sweeping the threshold weight. In
Fig. 4 the labels associated with each community describe
their dominant product categories. Although the dendro-

grams formed by using k=3 and k=4 are not identical, sev-
eral similar communities appear for both values. From the
commonsensical point of view, these appear natural: elec-
tronic devices and computer components merge to a single
community, as do music and movies, and children’s and
women’s clothing.

Often it is not possible nor meaningful to include all
k-communities in such a visualization: the outcome would be
too complicated to be interpreted by visual inspection. The
main problem are the numerous single k-cliques, which
merge to larger k-communities. For any analysis of the den-
drogram structure the entire data should be used but for vi-
sualization purposes it is useful to threshold the dendrogram
such that only k-communities which are larger than a thresh-
old size Nth appear in the plot. In Fig. 4 k-communities of
sizes larger than k are displayed, i.e., Nth=k.

B. Weighted k-clique percolation

As pointed out above, considering the weights in the defi-
nition of what constitutes a community is an alternative to
simply discarding low-weight links. Such an extension for
clique percolation has recently been introduced by Farkas et
al. in Ref. �20�. In this method, each k-clique is assigned a
“weight,” which equals the intensity �30� of its edge weights.
The intensity is defined as the geometric mean of the link
weights in the k-clique. The community structure is then ob-
tained by choosing an intensity threshold I* and taking into
account only those k-cliques whose intensity is above I*.

For our SCP algorithm, a simple modification allows for
weighted clique percolation according to the above scheme.
To achieve this, instead of building the k-communities simul-
taneously as the k-cliques emerge, all links are first inserted
to the network and the resulting k-cliques are stored. Then,
the intensity of each of these k-cliques is calculated, and the
cliques are sorted with respect to the intensity. Finally, the
sorted k-cliques are processed one by one by the second part
of the algorithm, until the intensity threshold is reached.
Multiple thresholding levels are obtained as before, but now
with respect to k-clique intensities, and a dendrogram can be
constructed similarly. Note that in addition to intensity, any

FIG. 4. Dendrogram visualization of the nested k-community structure of the trading categories of the Finnish online auction site
Huuto.net for k=3 �a� and k=4 �b�.
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other measure describing the “weight” of the cliques can be
used, e.g., if homogeneous cliques are sought for, one could
also take the clique coherence �30� into account. Sorting
cliques according to their intensities was briefly described by
Farkas et al. in Ref. �20�; their construction appears some-
what similar to ours as the intensity-sorted cliques are
handled in succession, and the method for obtaining overlap-
ping k-communities seems to correspond to building the
whole bipartite network between k- and �k−1�-cliques.

The above procedure requires keeping all k-cliques in the
memory in addition to the �k−1�-cliques. In most cases the
loss of speed is minimal, as the additional computational
load is related to the memory consumption and sorting of
cliques, which can be done in log-linear time. However, a
possible problem related to the SCP algorithm—and the
weighted clique percolation method, in general—is that all
k-cliques have to be processed individually, and their number
can be very large in dense networks as discussed in Sec. II C.
When the link weight thresholding procedure of Sec. III A is
applied, this problem can be somewhat circumvented by sim-
ply stopping the algorithm as soon as enough links have been
inserted for obtaining the community structure at the desired
“resolution.” However, for intensity-based clique percolation
this cannot be done, as all k-cliques have to be detected and
sorted first.

IV. CONCLUSIONS

We have introduced a sequential clique percolation algo-
rithm for detecting k-clique communities in a network by
sequentially inserting its edges and keeping track of the
emerging community structure �31�. This algorithm has spe-
cifically been designed for �dense� weighted networks, where
weight-based thresholding of either the links or the cliques
formed by them is necessary for obtaining meaningful infor-

mation on the structure. By applying the algorithm on test
networks, we have shown that the computational time re-
quired to process a network scales linearly with the number
of k-cliques in the network. The sequential nature of the
algorithm allows run-time construction of a dendrogram pre-
sentation of the nested hierarchical k-community structure,
which we have illustrated using a product category network.

The main tradeoff for our algorithm is that it detects the
k-communities for a chosen value of k with multiple weight
thresholds in a single run, instead of obtaining
k-communities for all values of k with a single weight thresh-
old as is done in the maximal clique algorithms. Hence the
SCP algorithm can be considered complementary to earlier
presented solutions �9�. Neither of these algorithms can be
argued to be strictly better or faster than the other as their
performance depends heavily on the network topology and
other aspects of the problem they are solving. The SCP al-
gorithm is particularly useful when a small clique size k is
used and when multiple weight threshold levels need to be
studied, or no prior knowledge of the proper threshold level
of a dense weighted network is at hand. The algorithm can
also be considered as a reasonable choice for very large
sparse networks as suggested by the short computation times
of the community structure of a mobile telephony network
having millions of nodes and links.

ACKNOWLEDGMENTS

We thank J. Hyvönen and J. Kertész for useful discus-
sions, and acknowledge programming assistance by J.
Hyvönen. We acknowledge support by the Academy of Fin-
land, the Finnish Center of Excellence program 2006-2011,
Project No. 213470. J.M.K. is partly supported by the GETA
graduate school. J.S. and M.K. acknowledge support by the
European Commission NEST Pathfinder initiative on Com-
plexity through project EDEN �Contract No. 043251�.

�1� G. Caldarelli, Scale-Free Networks: Complex Webs in Nature
and Technology �Oxford University Press, New York, 2007�.

�2� M. E. J. Newman, A. L. Barabási, and D. J. Watts, The Struc-
ture and Dynamics of Networks �Princeton University Press,
Princeton, 2006�.

�3� M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A.
99, 7821 �2002�.

�4� D. Lusseau and M. E. J. Newman, Proc. R. Soc. London, Ser.
B 271, 477 �2004�.

�5� A. Arenas, L. Danon, A. Díaz-Guilera, P. M. Gleiser, and R.
Guimerá, Eur. Phys. J. B 38, 373 �2004�.

�6� G. Palla, A.-L. Barabási, and T. Vicsek, Nature �London� 446,
664 �2007�.

�7� P. Holme, M. Huss, and H. Jeong, Bioinformatics 19, 532
�2003�.

�8� R. Guimerá and L. A. N. Amaral, Nature �London� 433, 895
�2005�.

�9� G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature �London�
435, 814 �2005�.

�10� M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113

�2004�.
�11� M. E. J. Newman, Eur. Phys. J. B 38, 321 �2004�.
�12� F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Pa-

risi, Proc. Natl. Acad. Sci. U.S.A. 101, 2658 �2004�.
�13� M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci. U.S.A.

104, 7327 �2007�.
�14� V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre,

e-print arXiv:0803.0476.
�15� A. Lancichinetti, S. Fortunato, and J. Kertész, e-print

arXiv:0802.1218.
�16� S. Fortunato and C. Castellano, e-print arXiv:0712.2716.
�17� P. F. Jonsson, T. Cavanna, D. Zicha, and P. A. Bates, BMC

Bioinf. 7, 2 �2006�.
�18� B. Adamcsek, G. Palla, I. J. Farkas, I. Derényi, and T. Vicsek,

Bioinformatics 22, 1021 �2006�.
�19� I. Derényi, G. Palla, and T. Vicsek, Phys. Rev. Lett. 94,

160202 �2005�.
�20� I. Farkas, D. Ábel, G. Palla, and T. Vicsek, New J. Phys. 9,

180 �2007�.

KUMPULA et al. PHYSICAL REVIEW E 78, 026109 �2008�

026109-6



�21� In a unipartite projection, the bipartite network is collapsed
such that only nodes of one type are left, each pair connected
by a link if they are both connected to the same node�s� of the
other type in the original bipartite network.

�22� T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms �McGraw-Hill, New York, 1990�.

�23� J. M. Kumpula, J. P. Onnela, J. Saramäki, K. Kaski, and J.
Kertész, Phys. Rev. Lett. 99, 228701 �2007�.

�24� M. E. J. Newman, Phys. Rev. E 64, 016131 �2001�.
�25� J. P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K.

Kaski, J. Kertész, and A. L. Barabási, Proc. Natl. Acad. Sci.
U.S.A. 104, 7332 �2007�.

�26� T. Heimo, J. M. Kumpula, K. Kaski, and J. Saramäki, e-print
arXiv:0804.3457.

�27� A. Clauset, C. Moore, and M. Newman, Lect. Notes Comput.
Sci. 4503, 1 �2007�.

�28� M. Sales-Pardo, R. Guimerá, A. A. Moreira, and L. A. N.
Amaral, Proc. Natl. Acad. Sci. U.S.A. 104, 15224 �2007�.

�29� A. Clauset, C. Moore, and M. E. J. Newman, Nature �London�
453, 98 �2008�.

�30� J. P. Onnela, J. Saramäki, J. Kertész, and K. Kaski, Phys. Rev.
E 71, 065103 �2005�.

�31� A Python implementation of the algorithm can be found online
at http://www.lce.hut.fi/~mtkivela/kclique.html

SEQUENTIAL ALGORITHM FOR FAST CLIQUE PERCOLATION PHYSICAL REVIEW E 78, 026109 �2008�

026109-7



Fluctuation and Noise Letters

Vol. 0, No. 0 (2001) 000–000
c© World Scientific Publishing Company

Limited resolution and multiresolution methods in complex network

community detection
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Detecting community structure in real-world networks is a challenging problem. Re-
cently, it has been shown that the resolution of methods based on optimizing a modular-
ity measure or a corresponding energy function is limited; communities with sizes below
some threshold remain unresolved. One possibility to go around this problem is to vary
the threshold by using a tuning parameter, and investigate the community structure at
variable resolutions. Here, we analyze the resolution limit and multiresolution behavior
for two different methods: a q-state Potts method proposed by Reichardt and Bornholdt,
and a recent multiresolution method by Arenas, Fernández, and Gómez. These methods
are studied analytically, and applied to three test networks using simulated annealing.

Keywords: Complex networks, Community detection, Limited resolution

Networks consisting of nodes and links are an efficient way to represent and
study a large variety of technological, biological and social complex systems [1, 2].
Usually the functionality of these systems is of central interest, which, on turn,
is closely related to the structure of the corresponding networks. In particular,
substructures called modules or communities are abundant in networks. These
communities are, loosely speaking, groups of nodes that are densely interconnected
but only sparsely connected with the rest of the network [3, 4, 5, 6] – consider, e.g.,
groups of individuals interacting with each other in social networks, or functional
modules in metabolic networks. As communities are supposed to play a special
role in the often stochastic dynamics of the systems under consideration, their
identification is crucial. Thus, reliable and computationally tractable methods for
detecting them in empirical networks are required.

Several methods and algorithms have been developed for community detec-
tion [7, 8]. One popular class of methods is based on optimizing a global quality



function called modularity [9], or a closely related Hamiltonian [10], which con-
tains the modularity as a special case. The related methods are computationally
demanding, especially for large networks, but various approximative algorithms ex-
ist [11, 12, 9, 13, 14]. For many test networks, these methods have been shown to
perform well [7, 15]. However, it has recently been shown that the resolution of
the modularity based methods is intrinsically limited, that is, modularity optimiza-
tion fails to find small communities in large networks – instead, small groups of
connected nodes turn out merged as larger communities [16]. For the Hamiltonian-
based method, there is also a resolution limit due to similar underlying reasons [17]
though this method contains a tuning parameter which can be used to study com-
munities of different sizes. Recently, Arenas et al. proposed a modification of the
modularity optimization method which also provides a parameter that can be used
to probe the community structure at different resolutions. Here, we compare these
two methods and their resolutions analytically, pointing out similarities and differ-
ences. Subsequently we apply them to several test networks using optimization by
simulated annealing.

We start by briefly reviewing the concept of modularity, introduced by Newman
and Girvan [9]. The modularity Q is defined as follows

Q =
1

L

m∑

s=1

(lss − [lss]), (1)

where L is the number of links in the network, lss is the number of links in commu-
nity s, [lss] ≡ K2

s/4L is the expected number of links inside community s, given that
the network is random, and Ks is the sum of the degrees of nodes in community s.
In modularity optimization, the goal is to assign all nodes into communities such
that Q is maximized.

The Hamiltonian-based method introduced by Reichardt and Bornholdt (RB)
is based on considering the community indices of nodes as spins in a q-state Potts
model, such that if the energy of such as system is minimized, groups of nodes with
dense internal connections should end up having parallel spins [10]. The Hamilto-
nian for the system is defined as follows:

H = −
m∑

s=1

(
lss − γ[lss]pij

)
, (2)

where [lss]pij
is the expected number of links in community s, given the null model

pij , and γ is a tunable parameter. Minimizing H defines the community structure.
When γ = 1, Eq. (2) becomes Eq. (1) apart from a constant factor. Hence the RB
method contains the modularity optimization as a special case, and can be viewed in
a more general framework. Changing γ allows to explore the community structure
at different resolutions, but communities with large differences in size cannot be
simultaneously detected using a single value of γ [17].

Recently Arenas, Fernández and Gómez (AFG) proposed a method [18] for
augmenting modularity optimization with a parameter, which similarly to γ above
allows tuning the resolution of the method. This approach considers the network
to be weighted. The trick introduced by Arenas et al. [18] is to add a self-link of



weight r to each node, in which case the modularity becomes

Qw(r) =
1

W (r)

m∑

s=1

(wss(r) − [wss(r)]) , (3)

where W (r) is total link weight in the network (including self-links), wss(r) is total
link weight inside community s and [wss(r)] is its expected value. Parameter r
adjusts the total weight in the network, which in turn changes the community
detection resolution [18]. Sweeping r and observing which communities are most
stable with respect to changes in r should reveal the community structure.

Eqs. (2) and (3) suggest that RB and AFG methods are somewhat related, al-
though not equal. The tuning parameters, γ and r, behave qualitatively in the same
way: large parameter values allow finding small communities, and small values yield
large communities. In fact, in the RB method, the effect of γ in Eq.(2) can be inter-
preted such that the ”effective” number of links in the network equals L/γ, whereas
the parameter r in Eq. (3) changes the total weight in the network. However, there
is a difference: r also increases the sum of weights within a community, whereas γ
has no effect on the number of links within a community. In order to illustrate the
connection between these methods, we next derive the “resolution limit” intrinsic
for Eq. (3) in the AFG method.

Now suppose that a network consists of ”physical” communities, which are some-
how known to us. We consider two of these communities, s and t, such that
the sum of weights of edges connecting them is wst. If these ”physical” com-
munities are merged by the detection method, the modularity Qw(r) changes by
∆Qw(r) = 1

W (r) (wst − [wst(r)]). The optimization of modularity should merge

these communities if ∆Qw(r) > 0, which yields

Ss(r)St(r) < 2W (r)wst, (4)

where Ss(r) is the total node strength in community s. An analogous result for RB
method is γKsKt < 2Llst, where Ks is total node degree in community s. Hence
the tuning parameters γ and r are not identical, and they affect the optimization
outcome differently. However, if we assume that Ss = St ≈ ns〈s〉, ns = nt and
Ks ≈ ns〈k〉 Eq. (4) reduces to

ns <

√
Nwst

〈s〉 + r
, (5)

which bears resemblance to the corresponding RB result: ns <
√

Nlst/(γ〈k〉).
Next, we present some numerical results obtained by sweeping the tuning param-

eters γ and r of the RB and AFG methods across a range of values, and optimizing
the respective energy functions using simulated annealing. Three different test net-
works are used. We show the behavior of the number of communities detected by
the methods as a function of the tuning parameter, and look for ”stable” regions
where this number remains constant [18]. Earlier, community structures detected
using several values of γ in the RB method have been reported in [10], but to our
knowledge complete sweeps and stability analysis have not been reported earlier.
We have used simulated annealing for optimizing the community structure.



Figure 1. Number of communities as detected with simulated annealing using the RB (upper) and
AFG (lower) methods. A: hierarchical scale-free network [19] of 125 nodes, B: Zachary’s karate
club. The vertical line denotes the traditional modularity optimization case.

Our first test network is a synthetic, hierarchical scale-free network of N = 125
nodes [19]. This unweighted network can be viewed to consist of 5 communities of 25
nodes each, which can be further divided into five-node cliques (for a visualization
of this network, see [19] or [18]). Figure 1(A) shows the number of communities
detected using the RB and AFG methods. Both methods are able to reveal the
large communities at small values of sweeping parameter, although the AFG method
seems to perform slightly better. One should note that this might be a feature of
the numerical optimization, and not the method itself. We remind the reader that
the ”traditional” modularity optimization corresponds to γ = 1 and r = 0. These
points are shown in the figures as vertical lines. Our results for the AFG method
are consistent with those reported in [18].

Our second test network is a small, unweighted network representing Zachary’s
karate club [20], which has often been used as a ”testbed” for community detection.
Modularity optimization is known to yield four communities, whereas this club was
observed to split into two communities. In [18], the authors demonstrated that AFG
method is able to find exactly those communities (by using the weighted version
of this network). Results for the unweighted network in Fig. 1(B) show that both
methods give similar results and are able to detect the two communities. A closer
inspection shows that the communities correspond to the split which eventually
happened (except for one individual classified differently by the RB method).

Our third test network is weighted, being larger than the previous examples
(986 nodes), and has a more complex community structure, Fig. 2(a). The average
degree of this network is 〈k〉 = 6 and it has been generated with a model designed to
resemble real, weighted social networks. Visually, the communities are less apparent
than in the previous test networks, although it can be seen that there are dense
groups of nodes with strong internal links, connected by weaker links. Applying
the clique percolation method [6, 21, 22] to this network using clique size 4 yields
communities whose sizes vary from 4 nodes (20 communities) to 43 nodes (1 commu-
nity). Because the network is weighted, we have used the a weighted Hamiltonian
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Figure 2. (Color online) A weighted test network having 986 nodes. Link colors vary from blue
(weak) to red (strong), Number of communities for the network as a function of the tuning pa-
rameters. Note that we have limited the number of communities to 300.

instead of (2) for the RB method. Results in Fig. 2(b) show that no clear ”stable”
regions of the tuning parameters with a constant number of communities are appar-
ent. One possible explanation is that this is due to quite non-uniform distribution
of community sizes, which may result in large communities continuously being split
into smaller ones as the tuning parameters are increased. A similar situation could
occur for many large real-world networks. However, by using small values of γ and
r it might be possible to study the large-scale community structure, such that the
network is split into a small number of large communities.

We have discussed the limited resolution of community detection methods where
a global energy-like quantity is optimized, by focusing especially on two methods
(RB and AFG) where the resolution can be adjusted using a tuning parameter. Al-
though the tuning parameters of these two methods give rise to qualitatively similar
changes in resolution, analytic derivations show that their effect on the resolution
limit is somewhat different. These two methods have also been numerically tested
by using simulated annealing, with the result that in small test networks, stable re-
gions of tuning parameter values, where the number of communities is constant, can
easily be found. These can be viewed to reflect ”optimal” communities. However,
on a large, weighted test network, where the clique percolation method indicates a
broader distribution of community sizes, no such regions are apparent.
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Chapter 1

Introdution

The beginning of modern genetis and the siene of inheritane an be traed

bak to Mendel and his famous ross-breeding experiments in the mid-nineteenth

entury. He found out that inheritane is ontrolled by disrete units, whih are

nowadays alled genes [1℄. This idea was later ombined with the Darwinian

theory of evolution into population genetis and the modern synthesis theory.

Evolution ould now be explained with small hanges in genome whih lead

to geneti diversity in distint populations, and speiation in separated popu-

lations [2℄. The disovery of the physial representation of genes as sequenes of

nuleotides in DNA moleules and the ontinuous advanes in sequening those

genes has sine made it possible to diretly observe the genes even for a large

number of individuals.

Understanding of the importane of geneti variation in ombination with mod-

ern tehniques for measuring and quantifying suh variation an nowadays be

used to diret the onservation of endangered speies. One suh speies is the

Mediterranean seagrass, Posidonia oeania. It is an important part of the loal

eosystem [3℄; however, its growth is very slow and thus it is di�ult to on-

serve. A better understanding of Posidonias geneti population struture and the

geneti �ows shaping it might allow fousing onservation attempts suh that the

geneti variation is properly preserved.

The problem in the ase of Posidonia [3℄, but also more generally [4℄, is that the

models used for inferring population struture or historial evolutionary events

giving rise to the struture are too restritive. Traditional methods an be mostly

divided into two ategories: Population genetis studies a large number of genet-
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ially similar individuals by using summary statistis of allele distributions in

those populations. Phylogeneti trees [5, 6℄ are mostly built for studying evolu-

tionary relationships of a smaller number of sampled organisms, whih are usually

of di�erent speies. Both of these approahes are well established, but work only

when strit requirements for the data are ful�lled. Loosening these requirements

would not only allow researhers to ombine the two levels of geneti struture

of the sequened individuals, the population-geneti view and phylogeneti trees,

but also to study the regions between these levels. However, models taking into

aount all possible senarios would have to be extremely omplex. In addition,

suh models should be tailor-made for eah speies, taking into aount their

speial features for example in reprodution patterns.

The biologial system of evolving populations is a typial example of a omplex

system. Complex systems ontain a large number of interating omponents,

whih an be simple when isolated from the system, but as a whole exhibit om-

plex emergent behavior. The abstration of omplex systems to networks has

proven itself as a suessful approah in �elds ranging from soiology [7℄ and lin-

guistis [8℄ to stok market [9,10℄ and epidemiology [11℄. Network methods have

been useful tools [13�15℄ for example extrating hierarhial struture, modeling

evolving systems and investigating olletive behavior, all of whih are typial

features of living systems. Food webs [16℄ and protein interation networks [17℄

are only some examples of biologial systems whih have been studied, and net-

works have a potential for serving as a general framework for the study of other

omplex biologial phenomena, whih annot be desribed with simple models. In

addition, network siene has already developed tools that resemble those of phy-

logenetis and population genetis, suh as methods for hierarhial ommunity

detetion.

In this Thesis, the possibility of using network-based methods for analyzing phylo-

geneti relationships between individuals is explored. Networks built from geneti

distanes between speimens of Posidonia oeania olleted from multiple loa-

tions in the Mediterranean sea are utilized as a test ase. Reent results based

on the same data set, obtained by using both traditional and network methods,

are also reviewed. Those results are ompared to ones produed with methods

developed in this Thesis. The main fous in this Thesis is on extrating large

and small sale struture from the geneti network of individuals by using hierar-

hial ommunity detetion. This Thesis presents the �rst results of ommunity

detetion studies on geneti distane data; to the best of the author's knowledge,
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no results of similar studies have been published earlier.

The data set onsists of the lengths of mirosatellite repetitions in seven loi of

the genome of eah individual speimen. As the Posidonia oeania populations

evolve, these lengths are altered by two overlapping mehanisms: mutations and

sexual reprodution. Due to this, any distane measure de�ned between two

individuals is bound to lose some information and is a ompromise between the

two mehanisms, making the hoie of the distane measure ambiguous. By

hoosing a distane measure, biologial assumptions are made about the data,

whih will re�et to any network studies made later. Two plausible distane

measures are ompared in detail.

After seleting the distane measure, the data is ready for network abstration,

and the aording methodology an in theory be straightforwardly applied. In

reality, however, there are some algorithmi and pratial ompliations aused by

the fat that most existing methods are developed for sparse unweighted networks,

and we are here dealing with a dense weighted network. Beause of this, the aim

of this Thesis is to solve some of these initial problems, and try out di�erent

methods on the data. Some of the tried methods appear to produe meaningful

results, whereas others fail.

This Thesis is organized as follows: Chapter 2 begins with a short introdution to

the speies Posidonia oeania, and desribes the data set aquired from olleted

samples. Speial emphasis is given to geneti distane methods, as they are the

basis of the network analysis in Chapter 3. Before this, traditional methods

for studying geneti relationships of data are brie�y introdued and results from

applying suh methods are reviewed.

Chapter 3 deals with the network methods used for studying the geneti population

struture of Posidonia. It begins by introduing the basi onepts and ideas of

network methods and ontinues by reviewing previous network studies of the

same data. After this, the problem of ommunity detetion is disussed in de-

tail, and two ommunity detetion methods suitable for analysis of the geneti

networks of Posidonia are then introdued. Results given by these methods are

then ompared to eah other, geospatial information on the sampling sites, and

to a orresponding phylogeneti tree. Chapter 4 presents onlusions on the re-

sults and omments on the usefulness of network methods as tools for studying

population geneti data. It also suggest solutions to some of the enountered

problems and paths for future researh.
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This Thesis has three Appendies. The �rst de�nes some basi onepts and

quantities. The seond introdues a sequential lique perolation algorithm de-

veloped by the author and his oworkers. The algorithm is an important part of

the Thesis, as it is required for arrying out the ommunity detetion analysis in

a reasonable time. The last Appendix introdues a software toolbox for network

analysis, whih was designed and implemented during making of this Thesis, and

was used for all the omputations, exluding the blok diagonalization approah.
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Chapter 2

Biologial bakground

2.1 The data set and basi statistis

2.1.1 Posidonia oeania

Posidonia oeania is an endangered seagrass living only in the Mediterranean

area. It forms large meadows in oastal areas at depths from 5 to 50 meters,

depending on larity of water and nutrient availability. Posidonia is a long-living

organism, known to live over 1000 years, and it grows horizontally by 1 to 6

entimeters eah year. The very slow growth makes it vulnerable to outside

in�uenes. The main reasons for Posidonia's endangerment are polluted waters,

espeially due to nutrients released into water, and �shing-related loal damages.

Posidonia is an important part of the Mediterranean eosystem and its meadows

work as arbon dioxide sinks. It is thus an important target for onservation

e�orts.

Posidonia oeania is an angiosperm mainly reproduing asexually by loning and

self-pollination. Sexual reprodution is known to be sporadi and even unsuess-

ful in the Western Mediterranean basin [26℄. The asexual reprodution ombined

with low rate of suess in pollination an lead to large populations with little

geneti variability. It is thus espeially important to fous onservation e�orts of

Posidonia on preserving its geneti variability. Finding out whih populations are

the most important ones with respet to geneti variability an be problemati.

It is hard to assess the importane of meadows to the overall geneti diversity
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based only on geographial observations, beause loal environmental fores and

oean urrents heavily a�et the gene �ow.

A better knowledge of the geneti population struture and diversity of Posidonia

ould be used to identify the important geographial regions for gene �ow. This

information ould then guide the onservation attempts on Posidonia. However,

it is di�ult to study Posidonia with traditional phylogeny and population in-

ferene methods, as they are usually based on models whih assume too simple

reprodution dynamis. Posidonia is thus a good andidate for utilizing network

based methods, where assumptions on the geneti struture are not as limiting.

Figure 2.1: A photo of Posidonia oeania taken in Porto�ne, Italy [21℄.

2.1.2 Sampling loations

The data set studied in this work onsists of 1468 samples of seagrass Posidonia

oeania, whih were olleted by diving from 37 di�erent loations in the Mediter-

ranean sea. The sampling loations were not hosen uniformly, but with large

di�erenes in density at di�erent parts of the sea: The Western Mediterranean

sea was more densely sampled than the Eastern, and the West also ontains areas

with large di�erenes in sampling density. This heterogeneity of sampling loa-

tions allows the data to be used to study spatial aspets of the geneti struture
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on many sales ranging from few hundreds of meters to thousands of kilometers.

The heterogeneity an also ause problems for some analysis methods that as-

sume homogeneous sampling. Suh assumptions are often impliit, and an in

this ase lead to overestimating the importane of some of the western sampling

loations. Throughout this Thesis, the sampling loations are divided to three

groups: western, entral and eastern, to allow a rough assessment of results from

di�erent methods with respet to sampling loations. For more details on this

division, see Figure 2.2. The artile by Rozenfeld et al. [3℄ whih ontains more

detailed information on the sampling loations.

Although the sampling loation density varies a lot, the sampling sheme inside

eah of those loations is similar. Approximately 40 shoots were olleted from

randomly drawn oordinates from a sampling area 20 meters in width and 80

meters long [3℄. From eah shoot, the meristem portion was olleted for des-

iation and preservation in silia rystal [3℄. After the olletion of the 1468

samples, part of the genome of eah sample was sequened for further studies

on the population-geneti struture. A genome wide sequening would be far

too expensive, and thus the sequening was limited to a number of mirosatel-

lite markers. These markers and the sequening proedure are disussed in the

following subsetions.

Figure 2.2: The sampling loations of the meadows of Posidonia oeania are

marked with irles. The loations are divided to three geographial groups:

west (yellow), entral (blue) and east (red).

2.1.3 Mirosatellites

Mirosatellites are a speial lass of hypervariable sequenes of non-oding DNA,

whih are widely used for omparing the extent of geneti di�erenes in two

organisms [22℄. The hypervarialibility of mirosatellites, i.e. their high mutation

rate, makes them ideal for omparing losely related organisms, suh as two
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samples of the same population or the same speies. This property ombined

with the fat that mirosatellites are mostly not under any seletion pressure

has made them inreasingly popular for example in rime investigation, disease

studies and strutural population analysis.

Struturally, mirosatellites are small motifs 1 to 6 nuleotides long, repeated

up to 60 times. The struture of the mirosatellite sequene makes it prone to

speial opying errors, whih auses the mutation rate to be onsiderably larger

than for example in oding genes. Normally, an error in the DNA opying proess

would ause a mismath between the opied DNA strand and the template strand

and trigger a repair proess, but o�sets in the number of repeats are not as

easily notied. This DNA slippage is the main mehanism behind mirosatellite

mutations. It mostly auses errors that delete or insert one repetition. The

proess does not seem to depend on the number of repeats, when the number is

limited to a ertain range usually from few dozens to few hundreds of repeats.

Beyond this range, however, there seem to be some mehanisms limiting the

length of the sequene [22℄. It is fairly straightforward to model the mutation

proess, as it an roughly be desribed as a random walk.

2.1.4 Sequening

The �rst stage of the sequening proess was isolating the genomi DNA by

following a standard CTAB extration proedure [3, 23℄. It would be too expen-

sive to sequene all known mirosatellites from all the samples. Beause of this,

samples from eight loations were fully genotyped for eight dinuleotides, four

trinuleotides and one 7-nuleotide, and 7 mirosatellite markers where then ho-

sen by using the onditions disussed by Arnaud-Haond et al. [24℄ to ahieve the

most e�ient ombination of the markers for separating lones from genetially

di�erent speimens [3, 25℄. Errors in sequening typially generate very small

dissimilarities among lonal ramets, and all speimen with a distint genotype

for only two or one alleles were re-genotyped for those loi [3℄. As Posidonia is

a diploid organism, the �nal geneti data set onsists of pairs numbers of rep-

etitions in eah seven loi for eah of the 1468 samples, whih thus onstitutes

a (2 × 7 × 1468) matrix. 834 of the 1468 samples were unique with respet to

the hosen mirosatellite markers, the rest being lones or not distinguished as

genetially di�erent by the resolution given by the 14 markers in 7 loi.
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2.2 Choosing the distane measure

In the ontext of studying the geneti struture of a large, geographially widely-

spread population, the individual genomes of the samples are not of muh interest.

Instead, the fous is on the geneti relationships between these samples. As large-

sale geneti relationships an be highly omplex, the simplest way to approah

the problem seems to be to onentrate on pairwise geneti relationships. The

geneti relationship of two samples is naturally desribed by their similarity. This

approah thus leads to de�ning a pairwise distane between all samples, in the

hope that the more omplex properties of the whole data set an be inferred from

these distanes.

The geneti distane approah an be used, for example, to �nd genetially dis-

tint populations in the data, as individuals belonging to the same population

should be genetially lose. Likewise, a gene �ow between two genetially distint

populations would result in short ross-population geneti distanes. Distane-

based methods are also the starting point of many model-based phylogeneti [28℄

and population struture inferene methods [18℄, whih have beome more pop-

ular than purely distane-based methods [5, 6, 18℄.

The geneti data of eah sample onsist of mirosatellite repetition numbers of

the two alleles in eah of the seven loi. Transformation of this mirosatellite

marker data into pairwise distanes turns out to be a non-trivial task. This

transformation is disussed in detail below.

2.2.1 De�ning the distanes

The mirosatellite data for eah sample onsist of unordered pairs of allele lengths

for eah lous. Genets an be distinguished in the data, but there is no unam-

biguous measure of the geneti distane between di�erent genotypes, although

the mehanisms for their evolution are fairly well known. This is beause two

suh mehanisms have an e�et on the distane: mutations and geneti mixing.

Both mehanisms impliate a way to de�ne the distane measure. These dis-

tane measures are alulated here for the Posidonia oeania data set and their

properties are studied.

Mutations in the mirosatellites usually alter the length of the allele by deleting
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or inserting one repeat, whose length in our ase is two nuleotides. The overall

proess of genome evolution by mutations only an be desribed by a random

walk in single-allele length. The orresponding distane measure between two

genomes an thus either be the minimum number of single-repeat mutations re-

quired to transform one genome to another, or the expeted time it would take

for one genome to transform to another. The �rst an also be viewed as the

maximum parsimony measure, and it is not as sensitive to the de�nition of the

underlying proess as the latter one is. The expeted-time measure would, for

example, have to take into aount the mehanism restriting the number of the

mirosatellite repetitions. The parsimony distane measure has been previously

used in network-based studies of Posidonia oeania [3, 29℄, and it was thus ho-

sen for loser inspetion. Rozenfeld et al. named the parsimony distane linear

Manhattan distane (LM), and de�ned it as follows:

di(A,B) =
k∑

i=1

(|Ai − Bi| + |ai − bi|), (2.1)

where Ai and Bi denote the lengths of the longer of the two alleles at lous i for

samples A and B, and ai and bi denote the shorter lengths, respetively. The

summation runs over sampled loi.

In the sexual reprodution proess only geneti reombination takes plae, and it

is not a�eted by the number of repetitions in the alleles. Hene a distane mea-

sure whih takes the allele lengths into aount would possibly produe misleading

results when applied to a system with a higher rate of sexual reprodution than

the mutation rate. The non-shared alleles distane (NSA) ounts the number of

non-shared alleles at eah lous of the two individuals, and as suh it e�etively

disards all information on the di�erenes of allele lengths. Thus the NSA dis-

tane is a suitable measure when sexual reprodution is the dominant mehanism

of geneti variation. The NSA distane is de�ned as follows:

di(A,B) =
k∑

i=1

∑

x∈{A
i
,a

i
,B

i
,b

i
}

(1 − |{x} ∩ {Ai, ai} ∩ {Bi, bi}|), (2.2)

where Ai, Bi, ai and bi are de�ned as in Equation (2.1), and the �rst summation

again runs over sampled loi. Instead of ounting non-shared alleles, a binary

measure for geneti mixing ould be de�ned as a parsimony measure, as the linear

Manhattan measure was de�ned. The allele parsimony distane (AP) ounts

the minimum number of allele replaements between two genomes for one to
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transform to another:

di(A,B) =
k∑

i=1

min(|{Ai, Bi}| + |{ai, bi}|, |{Ai, bi}| + |{ai, Bi}|). (2.3)

The NSA and AP distanes are similar to eah other up to a onstant multiplier,

and the only di�erenes are the ases where one of the samples is homozygous and

other is heterozygous in a lous. In the following, we will use the NSA distane

measure.

2.2.2 Comparisons between the distane measures

The satter plot of Figure 2.3, displaying values of the two distanes for eah

pair of ramets, illustrates the relationship between the NSA and LM distanes.

Judging from this plot, the relationship between these two seems rather linear, but

with reasonably high variane. A more quantitative measure of the relationship is

the orrelation oe�ient whih takes a value of approximately 0.71, in agreement

with the above onlusion.

Figure 2.3: Satter plot of the linear Manhattan distane (2.1) and the non-shared

alleles distane (2.2) for every pair of ramets in the Posidonia oeania data. The

value of the orrelation oe�ient is approximately 0.71.
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The two distane measures assume di�erent underlying evolutionary proesses.

Geneti population strutures produed by these proesses an be distinguished

from eah other, but the real proess behind the geneti population struture of

Posidonia is a priori known to be a omplex ombination of the two proesses.

Thus, instead of inferring the probabilities of the proesses produing the data, we

must resort to a more qualitative omparison of the geneti population struture,

and look for geneti struture harateristi of the two evolutionary proesses.

We begin by looking at the allele length distributions of all seven loi (Figure

2.4). A high mutation rate would yield a high degree of polymorphism, whih is

the ase only for two loi (1 and 3). Instead, the number of repeats in loi 2, 5,

6 and 7 are mostly on�ned to a small number of learly distint values. This is

indiative of a slow rate of mutation, implying that the use of the LM distane

in the analysis of this data set might not be well justi�ed.

Figure 2.4: The allele frequenies in the 7 sequened loi of the Posidonia. The

horizontal axis represents the number of repetitions de�ning an allele, and the

vertial axis the allele frequeny. The distributions for loi 1 and 3 are fairly

di�use with no lear gaps, implying a high rate of mutations. On the ontrary,

in the other loi the repetition numbers are mostly limited to a small number of

distint values, indiating that sexual reprodution is the dominant mehanism.

For lous 2, the di�erene between these values is large, whih auses substantial

di�erenes between the NSA and LM measures.

Let us now disuss the e�ets of these �ndings on the values of the distane

measures. Note that for lous 2, there are only 3 di�erent ommon allele lengths,
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whih are spread far apart separated by wide gaps where almost no alleles an be

found. Loi 6 and 7 are also on�ned to 3 distint values, but with the di�erene

that the values are not separated by gaps. The NSA distane measure disards

all information on the allele lengths, and thus the overall ontributions of loi 2,

6 and 7 on the distanes should be roughly equal. This is not the ase with the

LM distane, for whih the length of the gaps is important information. Figure

2.5 displays the mean ontribution of eah lous for both distane measures. It

is apparent that loi 2, 6 and 7 ontribute roughly equally to the NSA distane;

however, for the LM distane, the di�erenes are very high. This di�erene arises

from the ambiguity of the distane measures.
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Figure 2.5: Mean ontribution over all distanes of eah lous to the linear Man-

hattan distane and the non-shared alleles distane. There are substantial di�er-

enes between the NSA and LM measures, espeially for the loi 2, 6 and 7. The

NSA measure seems to give similar weights to eah loi, as opposed to the LM

distane, where the di�erenes an be large.

The problem at hand an be roughly divided into two limiting example ases. If

two (or several) alleles with a large di�erene in the number of repeats oexist in

a population of losely related individuals, applying the LM measure an produe

erroneous results. As an example, two ramets heterozygous with respet to this

allele ould have two homozygous desendants. The LM measure would yield a

high geneti distane between these, due to the large di�erene in allele lengths.

Thus, NSA would appear as the proper distane measure for suh ases. However,
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if there are two distint populations suh that all shorter alleles are found within

one and longer ones within the other, the LM measure learly provides a more

aurate view. One an thus interpret the LM distane as a measure of geneti

di�erenes over long, evolutionary time sales, and the NSA as a measure related

to shorter time sales.

In reality, however, both long and short time sales are re�eted in the geneti

omposition of populations. For the ase of P. oeania, this an be learly seen

in Figure 2.6, displaying the geospatial distribution of the ramets homozygous

and heterozygous with respet to lous 2. 121 ramets with alleles (164, 164) are

loated in the eastern and entral areas of the Mediterranean sea, whereas 225

ramets with alleles (182, 182) are loated in the western and entral areas. This

auses the LM distane to di�erentiate well between the east and the west, but

auses noise in the distane measure in the entral areas. On the other hand,

the 82 heterozygous ramets with alleles (164, 182) loated in the west and enter

an also ause large errors between the ramets from the west as disussed in the

previous paragraph. This laim is studied more losely in the following Setion.

Figure 2.6: Geographial distribution of sampling loations where the two ma-

jor alleles of lous 2 an be found. Distributions for the homozygous [(164,164),

(182,182)℄ ramets are shown separately. Colors indiate frequeny: red for loa-

tions with the highest frequeny, yellow for lowest frequeny, with the intensity

of the olor re�eting the frequeny. Small blue irles denote loations where

these alleles are not found. It is learly seen that the allele 164 is assoiated

with the east of Mediterranean and 182 with west; however there are also some

heterozygous (164, 182) samples near Spain.
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Correlations with loations

The above results learly indiate that there are orrelations between geneti

distanes and the loations of the sampling sites of ramets. Furthermore, the

analysis disussed in the previous Setion suggested that the LM measure di�er-

entiates well ramets sampled from geographially distant loations, while the NSA

seems to be appropriate measure for analyzing populations whih are spatially

and genetially lose. Here, we test this hypothesis using ROC urves [30, 31℄,

as introdued in this spei� ontext by Klemm [32℄. The ROC urves quantify

the extent to whih the geneti distanes an be used to lassify samples into

lusters, using the sampling loations as a referene. The results of the ROC

analysis for omparing di�erent distanes to the two geographial divisions an

be seen in Figure 2.7, whih seems to support the laim, as the LM is better for

oarse lassi�ation than NSA, but NSA is better when all loations are taken

into aount.

Eah point on the ROC urve orresponds to a threshold value θ. For eah

threshold value θ, the pairs of nodes are divided into two sets: those having a

distane smaller than the threshold and those who have a larger distane. The

pairs with the small distanes are predited to belong to same the lass, and the

ones with large distane are predited to belong to di�erent lasses. Using the

sampling sites as the true lasses, two rates of suess are alulated for eah θ:

the true negative rate, i.e., the fration of samples predited to belong to di�erent

lasses, whih atually belong to di�erent lasses, and similarly, the true positive

rate. These rates are then plotted against another. Hene a distane whih would

not orrelate at all with the lasses would yield a straight line.

To see how muh the ROC urves for ML and NSA are a�eted by the di�erent

mean ontributions of di�erent loi to the two distane measures illustrated by

the Figure 2.5, a renormalized distane measure was onstruted. This measure

is based on the LM distane, where the ontribution of eah lous is renormalized

suh that their means orrespond to those of the NSA distane. Figure 2.7 shows

that the normalization has a substantial e�et, but does not fully explain the

di�erene between the NSA and LM distanes.

Lous 3 was seen to have a high degree of polymorphism in Figure 2.4 and thus

it should have a high mutation rate. This implies that the LM measure ould

perform better or as well as NSA in the lous 3. To test this, a hybrid distane
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Figure 2.7: ROC urves for the predition of the sampling loations with di�erent

distane measures. The solid urves indiates the lassi�ation made with all the

37 loations, and the dashed urves show the results for more oarser lassi�ation

of the data to western, entral and eastern regions.

was onstruted suh that in the NSA measure, the third term in the distane

sum orresponding to lous 3 was replaed by the orresponding term of the

LM distane. In addition, this replaement term was normalized suh that its

overall ontribution was similar to the original NSA term. In Figure 2.7, this

hybrid model is seen to have a negative e�et on the predition ability of the

NSA distane for loations, and a positive e�et when only the oarser division

to east, enter and west is onsidered.

2.2.3 Conlusions

The ambiguities of measures for mirosatellite-based geneti distanes between

individuals are seen to ause problems when the measure needs to perform well

on multiple evolutionary time sales. For the Posidonia oeania data, this ould

indiate that for example studying only ramets loated on the oast of Spain,

where the sampling is most frequent, the NSA distane ould be a reasonable

starting point. On the other hand, the LM distane ould be used to estimate

long-range e�ets, however it ould ause substantial noise in the distanes when
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improperly used.

An interesting solution to the problem would be a hybrid distane measure taking

into aount population-level information that annot be otherwise inorporated

to the distane measure between two single genomes. However, suh a measure

would be harder to interpret, and at least is not trivial to onstrut a measure

that would perform better than both NSA and LM in all test ases. A substantial

part of this problem is norming the ontributions to the distane measures made

by eah lous, as the variane in the ontributions between the two measures is

large, whih has a substantial e�et to the overall performane of the distane

when prediting loations.

2.3 Basi statistis

The above-desribed data set on Posidonia oeania has been studied with om-

monly used biologial summary statistis methods in Refs. [24,34,35℄. Results of

these studies an be used as a basis in assessing any results produed with the

new methods disussed later. They also give a general idea of how the data is

organized, what the limitations of these methods are, and what they are good

for. In this Setion, those results are brie�y reviewed, and some basi statistis

of the data are disussed. Before that, the general ideas behind these methods

are brie�y desribed.

2.3.1 Phylogenetis and population genetis

Summary statistis of population genetis and phylogeneti trees are both good

andidates for studying large data sets of individuals, whose genome is represented

by a small number of mirosatellite markers. Phylogeneti trees an be used for

lonal speies or for individuals sampled from distint populations. Summary

statistis are better suited for losely related individuals, whih are preferably

sampled from same population. However, the use of these methods is often limited

by the underlying assumptions. These limitations are disussed brie�y in this

subsetion, to give an idea of what kind of data an be studied with traditional

methods, without having to resort to the network methods introdued later.
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A phylogeneti tree is a representation of lineages and history of evolutionary

events separating them for a set of individual organisms [5, 6℄. Phylogeneti

trees are also ommonly built between genes or speies, but these ases are not

onsidered here. A ommon way of presenting evolutionary relationships is a

rooted tree, where the leafs of the tree depit the sampled organisms. The inner

nodes represent the anestors of the leaves suh that a ommon parent of two

nodes is the last ommon anestor of those nodes. This means that the root of

the tree is the most reent ommon anestor of all the nodes. This hierarhial

branhing pattern is alled the topology of the tree. Most methods for building

phylogeneti trees de�ne branh lengths in addition to the topology. The lengths

an represent the period of time overed by the branh or the amount of geneti

divergene.

Phylogeneti trees are traditionally used in systematis by omparing morpholog-

ial di�erenes of speies. As the amount of moleular data has exploded in the

last deades, phylogeneti analysis has entered the genomi age. This, ombined

with the development of statistial methods of phylogeny inferene, has made it

possible to analyze data sets of hundreds of speies. Despite this suess, phylo-

geneti trees have limitations that restrit their use, as an example, for the data

set of Posidonia oeania disussed in this Thesis. If the studied set of nodes

or samples are from the same population or even from the same speies, sexual

reprodution an limit the usage of phylogeneti trees as the di�erent lineages

an now merge. Thus the tree struture annot orretly represent the histories

of all lineages, as mixing would ause the appearane of yles in the tree. Suh

e�ets an also be aused by horizontal gene transfer, whih is thought to play a

role in baterial evolution [33℄.

Traditional population geneti studies rely on simpli�ed models of geneti evo-

lution and reprodution mehanisms. The aim is to �t the observed data to the

models, and alulate summary statistis based on the �tted models. A typial

problem with this approah is the often unrealisti assumptions made by the mod-

els, suh as non-overlapping generations, random mating and equilibrium state,

whih are in many ases known to be violated in the studied populations [3℄. In

some ases, the use of the models is limited even more by the hoie of the studied

organism. As an example, in the ase of Posidonia oeania, lonal reprodution

severely limits the number of models that an be used. This means that many

of the ommonly used summary statistis, suh as the e�etive population size

and the generation time, ontain assumptions that are not ompatible with lonal
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organisms suh as Posidonia.

2.3.2 Results of the summary statisti studies

The Posidonia oeania data set desribed here has been studied with population

biology summary statisti methods in at least three artiles. The main results

of these artiles are brie�y presented here. The �rst artile by Arnaud-Haond

et al. [24℄ optimized the number of mirosatellite markers needed to distinguish

lones from genetially di�erent genotypes, and found a ombination of seven

dinuleotide markers, whih are also used in this Thesis as disussed earlier.

Diaz-Almela et al. [34℄, on the other hand, used the seven markers to study the

e�et of four Mediterranean �sh-farms on Posidonia oeania. Arnaud-Haond et

al. [35℄ again studied spatial orrelations in the geneti data and found a strong

west-east leavage. In addition, they found a putative seondary ontat zone at

Siulo-Tunisian Strait, high geneti struture between meadows, and high spatial

autoorrelation in some of the loations.

The strong geneti separation between west and east has also been observed

earlier with other data sets [20, 27℄ of Posidonia. On the basis of this strong

evidene, the large sale geographial orrelation of the genomi distanes is used

as a �rst benhmark for the new methods introdued later. More spei�ally, the

sampling loations and the samples are divided into western, entral and eastern

loations as disussed earlier, and the division is ompared in various ways to any

new results.

2.3.3 Distane based statistis and studies

Rozenfeld et al. [3℄ studied the linear Manhattan distane distributions by model-

ing the di�erent reprodution proesses and observing typial distanes produed

by them. Suh geneti diversity spetra (GDS) averaged over all within-loation

distanes are shown in Figure 2.8. The shapes of the spetra for the non-shared

alleles distane in panel a) and the linear Manhattan distane in panel b) look

fairly similar. The only di�erene seems to be related to the fat that the number

of distint distanes is larger for the LM measure. Rozenfeld et al. [3℄ found out

that most of the observed distanes in the GDS in panel b) were typial for lonal

reprodution and outrossing, and dedued that these are the main mehanisms
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in�uening the geneti struture of Posidonia oeania. In Figure 2.9, the same

GDS plots for NSA and LM distanes are shown for the whole Mediterranean-

wide data set. There, the lonal peaks at distane of zero are almost absent.

However, interestingly, the GDS for LM distane shown in panel b) seems to be

a ombination of multiple normal distributions. This ould be due to the strong

west-east leavage. The large peak would then orrespond to the distanes inside

the geographial areas and the small peak to the distanes between the west and

the east. This e�et annot be seen in the GDS for NSA distane in panel a),

whih might indiate that the di�erenes inside eah of the three geographial

areas are already so big for the NSA distane that the larger distanes between

the areas annot be distinguished from them. This means that the resolution of

the NSA distane for large geographial distanes is not as good as the resolution

of the LM distane on the same sale.

To verify the hypothesis about the large sale geographial e�ets on the global

GDS, the geneti distanes were plotted against the orresponding geographial

distane in Figure 2.10. A lear orrelation with the geographial and geneti dis-

tanes an be observed for both geneti distane measures. Notie that the den-

sity plots of Figure 2.10 are essentially joint distributions of geneti distane and

geographial distane, and the GDS distributions in Figure 2.9 are the marginal

distributions of those joint distributions when the geographial distanes are in-

tegrated out. Figure 2.10 thus on�rms that the peak orresponding to the large

genetial distanes in GDS of LM distane is indeed due to node pairs with large

geographial distane. Although similar orrelations to geography an be ob-

served for the NSA distane, distint peaks are not visible in the GDS plots for

NSA distane.

Thus the LM and NSA distane distributions appear to support the onlusion

made on the basis of ROC urves of Figure 2.7, namely that the LM measure

seems to better re�et large-sale variations, whereas the NSA distane performs

better in analysis of loal populations. This doesn't ome as a surprise, beause

the reombination proess measured by the NSA distane has physial onstraints

with respet to geographial distane, whereas the mutation proess measured by

the LM distane does not depend on geography.
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Figure 2.8: Geneti diversity spetrum (GDS) averaged over all the distanes in

eah sampling loation for a) the non-shared alleles distane (NSA) and b) the

linear Manhattan distane.
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Figure 2.9: Geneti diversity spetrum (GDS) of the whole data for a) the non-

shared alleles distane (NSA) and b) the linear Manhattan distane.
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(a) NSA

(b) LM

Figure 2.10: Two genetial distanes plotted against geographial distane: a)

non-shared alleles (NSA) and b) linear Manhattan (LM). Some orrelation be-

tween geographial and geneti distanes is visible, when large and small geo-

graphial distanes are ompared, but the e�et is more apparent for the LM

distane.
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Chapter 3

Network analysis of the data

In the previous Chapter, the Posidonia oeania data set was seen to ontain om-

plexity that ould not be fully aptured by traditional model-based methods and

summary statistis. The reason for this was seen to be the reprodution system

of Posidonia onsisting of three di�erent mehanisms. On one hand, lonal repro-

dution violates the most basi assumption of non-overlapping generations made

by lassial population geneti methods [3℄, and on the other hand, Posidonia's

sexual reprodution severely limits the usage of phylogeny methods. The data

was also seen to apture multiple evolutionary sales as the distanes between

the samples vary from few meters to thousands of kilometers.

Network siene has been suessfully used to apture both small sale struture

and large sale phenomena on omplex systems ranging from soial [7℄ to tehno-

logial [19℄ systems. The main idea of the network approah is to study systems

with a large number of interating elements by representing them as graphs,

where edges represent interations between the elements. This abstration step

allows the use of generi network-based data analysis methods to be applied to a

range of di�erent systems.

In this Chapter, network-based methods are used to takle the omplexity in-

herent in the population struture of Posidonia oeania. Earlier network-based

studies of the Posidonia oeania data set are �rst reviewed. These studies are

mostly based on using methods suh as minimum spanning trees and thresh-

olding, and omputing loal node-based topologial statistis from the networks

resulting from the appliation of those methods. This line of work is ontinued

in this Thesis by studying the large-sale struture by hierarhial ommunity
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detetion methods. Communities are sets of nodes whih are more densely on-

neted to eah other than to the rest of the network, and are usually related to

the funtional units of the system. Nested ommunities, or ommunities inside

ommunities, form hierarhial ommunity strutures. Community detetion is

thus lustering of nodes in a graph.

Although it has beome inreasingly popular to take interation strengths into

aount in the form of edge weights, most ommunity detetion methods still

only use the topologial properties of the network. This is a problem, as the

geneti similarity network of Posidonia is a full weighted network, and disarding

the weights would thus lead to a trivial topology. Here, one ommunity detetion

method, k-lique perolation, is modi�ed in a way that allows it to produe hierar-

hial ommunity struture. The other ommunity detetion method used in this

Thesis is blok diagonalization, whih is a general method for lustering distane-

based data. Results of appliation of these methods are �rst ompared by visual

inspetion and then by using the mutual information framework. Geospatial in-

formation on the sampling loations and phylogeny-tree-based lusters are also

utilized in the omparisons.

3.1 Converting the geneti distane matrix to a

network

To apply network methods to any dataset, an abstration step is needed for

interpreting the data at hand as a graph. In our ase, the natural way of doing

this is interpreting eah speimen as a node and adding an edge between eah

node with a weight representing the geneti distane between them [3℄. This is

equivalent to using the distane matrix D between the speimens as a weight

matrix W. Similar approahes have been used in past e.g. in interpreting stok

prie orrelations as a network [9, 10℄.

As our data ontains lones, the �rst preparatory step is to ollapse eah set of

lones to one node by removing all but one instane of eah lone. This leaves

834 unique nodes.

The usual interpretation of the weight of an edge between two nodes is that

the larger the weight, the stronger the interation between them. However, the
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distanes de�ned here behave in exatly the opposite way. It is also useful to

normalize the weight matrix suh that the maximum weight equals unity. These

requirements do not de�ne any unique way to transform distanes to weights.

Here, one of the simplest ways is hosen:

Wij = 1 −
dij

max dij

. (3.1)

3.2 Earlier network studies of the data

In addition to traditional population biology studies disussed earlier, the P.

oeania data set has also been studied using network methods. All of the four

artiles published about these studies are related to the same EDEN projet as is

this Thesis, but the author of this Thesis has not partiipated in any of them. In

this Setion those artiles are brie�y reviewed and some of their ideas are adopted

as a part of the ommunity studies disussed later.

The �rst of the four papers, written by Hernández-Garía et al. [29℄, is a short

introdution to the network perspetive for takling the omplexity related to this

kind of biologial data in multiple resolutions. The seond, written by Rozenfeld

et al. [3℄, goes somewhat deeper into the individual level geneti networks and

reprodution systems of the Posidonia oeania. Contrary to this, in Ref. [36℄,

Rozenfeld et al. try to infer large sale geneti �ows from the network of geneti

distanes between populations de�ned by the sampling loations by using meth-

ods suh as perolation and betweenness entrality. As this starting point is

somewhat di�erent from the one used in this Thesis, further disussion of this

paper is omitted here. The last artile disussed here, by Hernández-Garía et

al. [37℄, observes and models the size distributions of lonal samples.

3.2.1 Minimum spanning trees

In Ref. [29℄, Hernández-Garía et al. introdue some ideas for analyzing the

mirosatellite data of the Posidonia oeania with weighted omplex networks,

where the weights are de�ned with the linear Manhattan distane (Equation

2.1). They start by building a Minimum Spanning Tree (MST, see Appendix

A) of the distane network of sampled ramets of Posidonia oeania, and visual-
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ize the resulting tree, where nodes are olored aording to sampling loations.

Minimum/maximum spanning trees have also been used earlier to study stru-

tural properties of e.g. stok prie orrelation networks [10℄. MST visualization

is a good and �exible tool for roughly representing the orrelations between the

geneti struture and the geographial loations of the nodes. MST-based visual-

izations are used in this Thesis for omparing the results of ommunity detetion

methods, as well as their relationship to geography.

One should be somewhat autious when making a priori laims about the meaning

of the struture of the MST for any partiular type of network. Hernández-Garía

et al. [29℄ interpret the MST as the main path of gene �ow among the plant

populations, on the basis that the edges represent losest relations between the

nodes. This seems to be a straight-forward interpretation, although it might be

a little problemati to de�ne the main path of gene �ow to go through single

organisms as their genomes are of ourse stationary. The real problems with the

MST are more general and subtle, and are related to the fat that the MST is

not neessarily unique if multiple links have same weights. Even if this is not the

ase, the MST is likely to disard many important links due to small di�erenes

in their weights, and is thus highly vulnerable to small perturbations. As an

extreme example of the non-unique nature of the MST, for a ase where all nodes

are lones, any tree onneting those nodes is their MST. If only a single MST

is given for this ase, its topology thus depends solely on the algorithm that was

used for onstruting the tree or is ompletely random. Keeping this in mind, it

would be advisable to use only one node to represent all of its lones in a MST.

The hoie of distane measure will also have an e�et to the topology of the

MST as even small hanges in the distanes an ause large deviations in the

tree. This must be taken into aount espeially when using a distane measure

whih an produe large random errors in estimating short distanes, beause the

minimum spanning tree is based on small distanes. This was seen to be the ase

with the linear Manhattan distane of Eq. (2.1) in the previous Chapter where

the distane measures were ompared.

3.2.2 Thresholding

Another approah for studying full weight matries with network-related methods

is thresholding, where the network is onstruted of those matrix elements whose

weights are above some threshold value, wth. This approah was adopted by
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Rozenfeld et al. [3℄ and Hernández-Garía et al. [37℄. Networks resulting from the

thresholding proedure an be studied with tools of unweighted network analysis,

suh as analysis of degree distribution or lustering oe�ient (see Appendix

A). This approah is better than using the MST in the sense that it disards

less information, but on the other hand the hoie of the threshold wth an be

problemati. In the ase of the network of samples of Posidonia Oeania, the

threshold an be hosen based on biologial arguments or topologial arguments.

For example, the average geneti distane between parents in simulated data has

been used as a threshold for meadow-wide networks [3℄. The network topology

itself an be used to determine the threshold by setting the threshold weight wth

to be equal to the ritial point in perolation, whih is roughly the minimum

threshold weight giving rise to networks where almost all nodes belong to the

largest onneted omponent.

The problem with hoosing a single threshold is that many of the network statis-

tis depend only on the hosen value, as for example the average degree and the

lustering oe�ient go from zero for the maximum threshold to their largest

values for zero threshold. One solution to this is to use a range of threshold

values instead of a single one, and study the hosen measures as a funtion of the

threshold. This approah is used in later this Thesis for the ase of ommunity

detetion using the k-lique perolation method. This method is stritly topo-

logial; however it an be applied to weighted networks by thresholding them

�rst.

In the ase of the Posidonia oeania data set, hoosing a threshold is problem-

ati also beause of the heterogeneity of the sampling loations, as the geneti

distanes between samples from the densely sampled Spanish oastal area are

short ompared to the most of the other distanes. Hene, a threshold giving

rise to a network where the eastern nodes form a sparse network with visible

struture would ontain a large, almost fully onneted lique of western nodes.

Furthermore, a threshold providing some resolution on the Spanish data would

leave the eastern nodes disonneted from eah other and from the western nodes.

Thus the proper thresholds for analyzing western, eastern or the whole data are

dramatially di�erent.

This problem of hoosing a global threshold is addressed in the artile by Rozen-

feld et al. [3℄ by simply looking the loal networks formed of eah sampling loa-

tions. Apart from visual inspetions of the resulting geneti networks in sampling
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loations, the main network-based result seemed to be the small world prop-

erty [56℄ of the networks. This means that path lengths of the network remain at

the level of Erd®s-Rényi random networks [53℄, while the mean lustering oe�-

ient is notably higher than in random networks. As geneti networks are based

on distane measures, the triangle inequality implies a large lustering, and even

a small number of random links ensures the small path lengths. As Rozenfeld et

al. noted, the small world property is a very ommon feature of omplex networks.

In Ref. [37℄, Hernández-Garía et al. use the thresholding approah and plot the

resulting networks for a single sampling loation for four values of threshold.

In addition, they show the degree distribution averaged over the networks of

eah loation at threshold levels zero and 30 of the linear Manhattan distane.

Most of their paper after this is devoted to modeling and studying the lone size

distributions, whih an also be interpreted as thresholding with value zero. This

is of ourse a trivial threshold level in the network sense as the resulting networks

only ontain disonneted liques eah orresponding to a set of lonal samples.

3.3 Community detetion

3.3.1 Overview of the problem

Initially, researh on omplex networks foused on studies of distributions of node

and edge based statistis, suh as the lustering oe�ient and betweenness en-

trality. Sine then, the fous has been shifting to more mesosopi quantities. One

of the most fundamental large-sale problems is ommunity detetion. Commu-

nity detetion is an important problem as in many ases ommunities orrespond

to funtional entities in networks, or are otherwise relevant in ontext of the un-

derlying system. The problems in ommunity detetion are not as muh related to

di�ulties with omputation or algorithmi performane as they are to the exat

mathematial de�nition of a ommunity. A ommunity is in most ases loosely

de�ned as a set of nodes that are internally more densely onneted than exter-

nally. The de�nition of a ommunity is not always based on network topology,

and sometimes ommunities are de�ned based on a spei� underlying problem.

For example, in soial networks groups of friends an at as ommunities, or in

geneti networks a group of genes performing some well de�ned funtion an be

onsidered a ommunity. In spite of this intuitive knowledge of what ommunities
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or lusters in graphs should be, a generally aeptable all-purpose de�nition is

still to be found.

An alternative view to the ommunity detetion problem is that a universal de�-

nition of a ommunity annot be found. This view is supported by the existene

of dozens of di�erent ommunity detetion methods built on learly di�erent

and inompatible underlying assumptions. The lak of a unique formal de�ni-

tion of a ommunity makes the problem of �nding the best ommunity detetion

method ill-posed, and the problem beomes hoosing whih ommunity dete-

tion method is best suited for the task at hand. When seleting a ommunity

detetion method, at least the following questions should be answered:

1. Should it be possible for a node to belong to more than one ommunity?

2. Should it be possible for a node not to belong to any ommunity, or to form

its own single-node ommunity?

3. Should the method assign nodes to ommunities of roughly the same size,

or is a large variation of sizes expeted in the data?

4. Should the method be hierarhial, or should it produe just a single division

of nodes to ommunities? That is, should the method be able to detet

ommunities nested inside larger ommunities?

5. In weighted networks, how are the weights taken into aount when detet-

ing ommunities?

Despite the ambiguities in ommunity detetion, several properties are learly

desirable for any method. For example, adding a new omponent to a network

should not a�et the ommunity struture of the existing omponents inferred by

any method. This implies that the ommunity struture should be determined

using only the loal topology of the network. Lak of suh loality has proven to

be a ommon pitfall in ommunity detetion, as it is not always apparent from

the desription of a method whether it produes suh unwanted global e�ets

in the ommunity struture. Community detetion methods an be divided into

global methods, having a network-level �tness funtion whose maximum yields the

desired lassi�ation of nodes to ommunities, and loal methods, whih only take

the loal topology of the network into aount. Both types of methods have their

advantages and problems, whih are disussed in more detail in the following

subsetions.
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One loal and one global ommunity detetion method were hosen for loser

inspetion in this Thesis. The lique perolation method is a loal, topologial

ommunity detetion method, and the blok diagonalization method is a global

lustering method for distane matries. Only a small fration of all available

ommunity detetion methods are disussed in this Thesis, and to get a broader

view of the �eld, the reader in enouraged to read the reent review artile on

the matter [39℄.

3.3.2 Loal methods: Perolation and k-lique perolation

Disarding a fration of the edges of a network based on some riterion and

then interpreting the remaining omponents as ommunities is a straightforward

and ommonly used method for ommunity detetion for example in soial net-

works [40℄. Suh edge perolation methods an be divided into two ategories:

in agglomerative methods, edges are added to an initially empty network, and in

divisive methods, edges are removed from the original network. In both ases,

the fration of edges added or removed ats as a ontrol parameter. A variety of

riteria exists for the order of edge removal or addition. For a weighted network,

the given edge weights an be used to order the edges. Also topologial prop-

erties, suh as edge betweenness, an be used to determine the order in whih

the edges are removed or added to the network. Topologial properties an be

alulated only for the original network, or dynamially after eah addition or

removal.

The goal is to remove just the right fration of edges giving rise to a network whose

disonneted omponents orrespond to the ommunity struture. If the fration

of removed edges is too high, (almost) all nodes belong to a single onneted

omponent (the giant omponent), whereas removing too many edges leads to a

severely fragmented and ultimately to an empty network. Suh proesses have

been extensively studied in perolation theory [41℄, and it has been notied that

in many systems the transition from the situation where almost all nodes belong

to a single omponent to a situation where there are a large number of small

omponents is very rapid. In this ontext, the number of edges needed to be

removed to arrive at the point of transition between the two phases is alled the

ritial point of the system. If suh a point exists for a perolation proess, it

an serve as a good andidate for determining the proper fration of edges to be

removed.
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The lique perolation method [42℄ an be onsidered a modi�ation of the edge

perolation method. For the edge perolation method, two nodes are assigned

to the same ommunity, if they are onneted via any path along the edges.

However, for lique perolation, there has to be a path of liques. Formally,

two k-liques, i.e. liques of k nodes, are de�ned to be adjaent if they share a

ommon k − 1-lique. The k-liques are thus nodes of a new k-lique network,

where links represent these adjaeny relations. Then two nodes in the original

network are in the same ommunity if they partiipate in k-liques whih are in

the same omponent of the k-lique network.

The k-lique perolation method has some desirable properties: The number of

ommunities a node an belong to is not predetermined, but a node an belong

to any number of ommunities, or even to no ommunity, depending on the

network topology. The method is based on loal network topology only, and far-

away nodes or edges do not have an e�et on the loal ommunity struture. A

ommunity is expliitly de�ned, whih makes the resulting ommunity struture

easy to interpret. In addition, the method is deterministi, whih ensures that

k-lique perolation algorithms always �nd the same ommunities in a network.

The less desirable properties of the lique perolation method inlude exponen-

tially saling omputational ost as funtion of the network size, in the worst ase

when ommunities of all lique sizes k are sought for. Also, small perturbations in

the network an ause large hanges in the ommunity struture. For instane, if

there is a single k-lique between two large ommunities, removal of a single link

in that lique will ause the two ommunities to split. The saling is not a prob-

lem in most ases as it is usually enough to use liques of size three to �ve [43℄,

and extremely large highly onneted subgraphs are not very ommon in net-

works. Saling issues ould be solved by hoosing the right value for the lique

size k, but the hoie of the k-lique threshold imposes more problems. First,

the lique size k must be integer-valued, whih may lead to a situation where a

suitable value annot be found. Seond, Palla et al. [42℄ suggested a heuristis

for �nding a global value of the lique size k. However if the network is highly

heterogeneous, this might yield a ompromise value only, whereas di�erent values

of k ould be more suitable for di�erent parts of the network. Choosing a single

lique size k depending on the network also violates the property of ommunities

being loal in the sense disussed earlier.
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(a) Shemati view (b) Data

Figure 3.1: Clique perolation in weighted networks is a ompromise between

topologial oherene and weighted struture of the ommunities. A shemati

view of this with respet to the optimal threshold is represented in a). The

topologial oherene (vertial axis) is inreased as the lique size inreases. In-

reasing the threshold level (horizontal axis), i.e. the smallest aepted weight,

inreases the relative importane of weights. The rihest ommunity struture for

eah lique size an be found by using the optimal threshold, whih is the ritial

point of the lique perolation proess. In b), the same shape of the optimal

threshold urve is observed in a data of east oast ramets of Posidonia oeania

with linear Manhattan distane. The suseptibility in b) is de�ned as the mean

size of the omponents exluding the largest one, and it is expeted to peak and

the giant omponent size to saturate near the optimal threshold.

3.3.3 K-lique perolation and the Posidonia oeania data

When viewed as networks, the geneti distane matries of samples of Posidonia

oeania represent weighted, full networks. It is lear that these networks need

to be thresholded before the lique perolation method an be used. An alter-

native is to use the weighted version [44℄ of the method, but this approah is

omputationally extremely demanding for full networks. As the network is very

likely to ontain nested ommunity struture, hoosing a single threshold and

disregarding of the rest of the weights seems problemati. Also the heteroge-

neous loations of the sampling sites result in networks with domains of di�erent

weight sales. That is, the nodes from western Mediterranean were sampled with

muh higher resolution than those from the eastern parts of the sea, and thus the

weights between western nodes are of di�erent sale than the weights between

eastern nodes. These aspets render the use of a single threshold for the lique

perolation method useless for our data set of Posidonia oeania. To solve this

problem, a hierarhial version of the lique perolation method using threshold
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sweeps [43℄ was developed by the author and oworkers. In our method, the k-

lique ommunities are omputed for eah weight threshold level of the network

starting from the full network and removing edges one by one, starting from the

smallest weights. The lique size k is seleted beforehand and kept onstant in

this proess. Before removing any edges, the whole network onstitutes a single

large ommunity. When edges are removed, ommunities begin to split, and the

splitting proess an be interpreted as hierarhial ommunity struture. Suh

hierarhial strutures are presented in this Thesis as rooted trees, where the

root is the ommunity onsisting of all the nodes in the network, and the leaves

are the smallest ommunities in the hierarhy. As illustrated in Figure 3.1, the

lique size k orresponds to the required strutural integrity of ommunities. The

weight threshold orresponds to the smallest weight whih has an e�et on the

ommunity struture. The ombination of the lique size and the threshold thus

determines the relative importane between topology and weights in ommunity

detetion.

Although the algorithm suggested for lique perolation by Palla et al [42℄ ould

be, in theory, used for the hierarhial the lique perolation method, it is not a

suitable algorithm for the task. Computation of the largest liques of a graph,

whih is required when using the algorithm for lique perolation suggested by

Palla et al. [42℄, an be a problem in dense networks, as it is known to be a NP-

hard problem. In addition, ommunity struture should be alulated separately

for eah threshold level, if this algorithm was to be used for the hierarhial

lique perolation method. These ompliations were avoided here by developing

a omplementary algorithm for lique perolation whih is able to produe the

ommunity struture at eah threshold level in a single run. The trade-o� is

that only a single lique size an be used at a time. However, the use of single

lique size instead of �nding the largest ones lowers the theoretial saling of the

omputational time when small liques are used. This new algorithm is disussed

in detail in Appendix B and in Ref. [43℄.

Results

As the hierarhial lique perolation method employed in this Thesis is based

on removing edges in order of weight, results are evidently sensitive to the dis-

tribution of edge weights. In partiular, if the distribution is heavily disrete

instead of ontinuous, suh that for eah weight there is a large number of edges,
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the resolution of the method an be somewhat ompromised. In suh a ase, it

is sensible to use the threshold weight as the ontrol parameter instead of the

fration of edges removed, suh that the ommunity struture is evaluated at

points where all edges below the threshold have been removed. Thus, there may

be drasti jumps in the ommunity struture if there is a large number of edges

with the same weight, espeially near the ritial point.

The lak of resolution is a problem for the geneti similarity network of Posidonia

oeania as the distanes between samples are highly degenerate when the NSA

distane measure is used. The resulting tree thus onsists of only a few levels

of division steps, whih an be learly seen for lique sizes k = 3 and k = 4 in

Figure 3.2. Using a larger lique size will not help onsiderably, although this

gives more weight to the topology of ommunities, as it will most likely only shift

the region of interest instead of widening it. In addition, �nding large liques

is omputationally demanding for the geneti similarity network of P. oeania.

Despite the low resolution of the lique perolation method apparent in Figure 3.2,

divisions made by the lique perolation method are reasonable when ompared

to geospatial information on the sampling sites. Clique perolation might be a

suitable ommunity detetion method for geneti similarity networks for ases

where high-de�nition weights not giving rise to resolution problems would be

available, or if the resolution problem ould be solved by modifying the method.

(a) 3-lique perolation
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Figure 3.2: Splitting proess of 3-lique and 4-lique ommunities when the weight

threshold is varied for the geneti similarity network of Posidonia oeania. The

similarity of nodes is based on the NSA distane. The nodes are divided to

three geographial groups: west (yellow), enter (blue) and east (red) and the

frequenies of the groups in eah ommunity are shown as a pie hart.

Using the LM distane instead of the NSA distane leads to geneti similarity

networks with more distint weights, and thus inreases the number of hierarhy
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levels in the hierarhial lique ommunity tree. However, the LM measure might

be prone to large random errors in small-sale genetial distanes, although it

an be used to predit large time sales very aurately. Thus, using the LM

distane matrix as a basis of lique perolation might result in more random

errors in the low levels of ommunity hierarhy than using the NSA distane

with higher resolution that the number of di�erent weights would allow. The

inreased number of hierarhy levels is visible in the hierarhial ommunity tree

of Figure 3.3, whih uses a geneti similarity network based on the LM distane.

The rough division of the node loations to three lasses orrespond very well to

the results of 3-lique perolation based on the LM distane matrix, whih was

expeted as the LM distane is known to re�et the division better than the NSA

distane (see Figure 2.7). It is worth notiing that the shape of the hierarhial

ommunity tree produed by lique perolation based on the LM distane matrix

is very unbalaned. This is due to the heterogeneous density of the sampling

loations in the Mediterranean sea.

Figure 3.3: Splitting proess of the 3-lique ommunities when the weight thresh-

old is varied for the geneti similarity network of Posidonia oeania. The simi-

larity of the nodes is based on the LM distane. The nodes are divided to three

geographial loations: west (yellow), enter (blue) and east (red) and the fre-

quenies of the groups in eah ommunity is shown as a pie hart.

3.3.4 Global methods: blok diagonalization

Global ommunity detetion methods are based on optimizing a value of energy

or �tness funtion omputed for eah division of nodes to ommunities. This ap-

proah an, in the worst ase, lead to unwanted behavior, suh as the ommunity
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struture orrelating with global properties of the network, suh as the number

of nodes. This has been reently proven [45, 46℄ to be the ase with popular

modularity-based methods [40℄, thus rendering these methods highly unreliable

or even ompletely useless.

After the shortomings of modularity-based methods were proven, there have

been attempts to orret these faults. Some of these attempts have turned out

to be just osmeti hanges and have failed to orret the real underlying prob-

lem [46℄. One of the remedies has been proposed by Sales-Pardo et al. [47℄. They

try to orret the resolution limit problem of the modularity by not limiting their

method to one optimal ommunity division. Instead, they try to �nd a hierar-

hial ommunity struture based on the modularity measure. This is ahieved

by alulating multiple greedy modularity optimizations and saving the results in

a weighted network, where eah link weight orrespond to the number of shared

ommunities between two nodes in eah of the optimization outomes.

This a�nity matrix is then used for hierarhial lustering by using the blok

diagonalization method. In this method, the indexing of the nodes in the matrix

is reordered in suh a way that large-weight elements are as lose to the diagonal

as possible. This is ahieved by optimizing a global energy funtion assigned for

eah node indexing:

C =
1

N

N∑

i,j=1

Wij|i − j|. (3.2)

The optimization is done in Ref. [47℄ by simulated annealing, but other heuristi

methods ould also be used. Simulated annealing is a general approah for global

optimization problems whih tries to mimi the physial proess of ontrolled

annealing for reduing the number of rystal defets. The simulated annealing

proedure is a greedy optimization method ombined with random steps. The

ratio of random steps is ontrolled by the temperature parameter, whih is grad-

ually dereased to ahieve onvergene of the energy to an optimal value. At eah

step of the proess, parameters of the energy funtion are randomly perturbed

and the resulting hange in the energy is observed. If the energy is dereased,

the perturbation is kept. If the energy inreases, the hange is aepted with a

probability whih is determined by the amount of hange in the energy and the

temperature parameter. Inreases in energy are more likely to be aepted at

high temperatures than at low temperatures. The whole proess starts from very

high temperatures to avoid loal minima, and the temperature is dereased as a
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funtion of perturbation steps. This proess an be repeated multiple times using

di�erent starting onditions and shemes for dereasing the temperature.

After the optimization of indies, possible ommunities should show in the re-

ordered matrix as bloks along the diagonal, as is the ase in Figure 3.4. The

next step is deteting the bloks, whih is done as follows: A similar simulated

annealing proedure is used to �t k bloks to the matrix, suh that the variane of

weights is minimized inside eah blok and the surrounding area. This is equiva-

lent to minimizing the following residual sum of the squares E for eah value of

k by moving the blok boundaries:

E =
k∑

m=1

∑

i,j∈block(m)

(W (i, j) − 〈Wm〉)
2 +

∑

i,j /∈block

(W (i, j) − 〈Woutside〉)
2
, (3.3)

where 〈Wm〉 is the mean weight inside the blok m, and 〈Woutside〉 is the mean of

all weights that are not inside any blok. This proedure is repeated for a range

of values of k, k = 1..K.

Inreasing the number of bloks k will not ever ause the residual sum of the

squares E to inrease, beause only the number of free parameters in the optimiza-

tion problem is inreased. Finally, the Bayesian information riterion (BIC) [52℄

is used for seleting a value of k whih orresponds to a good ompromise between

the value of the residual sum E and the number of free parameters. The BIC is

de�ned as

BIC = N ln(
E

N
) + k ln(N), (3.4)

where the parameter N is the number of elements on the diagonal of the weight

matrix W . The smaller the BIC value is, the better the ompromise is, and thus

the optimal value of k orresponds to the lowest BIC value.

The hierarhial ommunity struture an be built by repeating the blok diag-

onalization proedure for submatries orresponding to eah ommunity. This

means that if the optimal number of bloks k is larger than one, the blok di-

agonalization proedure is used reursively k times. This reursion is further

ontinued, until all bloks have k = 1 as their optimal value and splitting is

no longer neessary. The results of this reursive splitting proess an be repre-

sented as a hierarhial ommunity tree, where the root of the tree is the set of

all nodes in the network, and the rest of the nodes in the tree orrespond to a

blok found by the blok diagonalization proedure. Notie that branh lengths
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are not de�ned for the hierarhy tree.

The blok diagonalization method desribed by Sales-Pardo et al. in Ref. [47℄ uses

modularity for unweighted networks to alulate the a�nity matrix. Although

modularity an be generalized for weighted networks [48℄, it might be more rea-

sonable to use the weight matrix itself as the a�nity matrix if the network is

dense. For ases where the weight matrix is derived from a distane matrix it is

even more sensible to diretly use the distanes as a�nities. Thus, the blok diag-

onalization proedure was used to detet ommunities in the Posidonia oeania

geneti similarity network, with the modi�ation that the modularity optimiza-

tion part was left out, and instead the distane matrix was used as an a�nity

matrix.

3.3.5 Blok diagonalization and the Posidonia oeania data

The blok diagonalization proedure, as desribed above, was repeated for the

Posidonia oeania data set using both NSA and LM distanes. The LM dis-

tane was previously seen to ontain more noise in the small distanes, whih

radially re�eted to the hierarhial ommunity struture deteted by the blok

diagonalization method. The 834 nodes of the network were divided into 61 om-

munities, when the LM distane was used, and only to 24 ommunities when

using the NSA distane. This might suggest that the blok diagonalization is

�tting the ommunities to noise aused by the shortomings of the LM distane

measure.

The resulting hierarhial ommunity tree produed by the hierarhial blok

diagonalization method is shown in Figure 3.7 for the NSA distane and in Figure

3.6 for the LM distane. The nodes of the tree are displayed as pie harts,

whih represent the west-entral-east division of nodes in the orresponding blok.

The size of nodes indiates blok size. The �rst splits in both ommunity trees

orrespond well to the large-sale geography, although the �rst splits might be

more aurate in this sense when using the LM distane, whih predits the

large-sale divisions better. The more densely sampled west is separated from

the east in the beginning of the splitting proess, and the two parts are thereafter

independent of eah other. Thus, it is lear that the heterogeneous sampling

does not ause problems for the blok diagonalization, as it did for the k-lique

perolation method.

39



The fat that the blok diagonalization of the LM distane matrix produed 61

ommunities, and the same proedure produed only 24 ommunities when the

NSA distane was used, raises questions about the reliability of the ommunities

at the lower levels of hierarhy. The blok diagonalization method seems to be

�nding ommunities in noise, although the Bayesian information riterion whih

is used for determining the number of ommunities should be able to prevent

suh over�tting. To test the reliability of the hierarhial ommunity struture

predited by the blok diagonalization for the LM distane matrix, the data was

randomized and the blok diagonalization proedure applied to it. Blok di-

agonalization was tested by randomizing the geneti data of ramets in western

Mediterranean in two ways: The �rst way was to randomize the genomes in a way

that the pairwise orrelations of the alleles in eah lous were preserved. This

was done by olleting all pairs of alleles into seven vetors, eah orresponding

to one lous. The elements in eah vetor were then randomly permutated. The

seond way was to disard also pairwise orrelations and only keep the distribu-

tions of alleles in eah lous. After this proedure, the data would orrespond to a

randomly mating population. The NSA distane measure was used to alulated

the distane matries, whih are shown in Figure 3.5 for the �rst randomization

sheme. In both of the ases the blok diagonalization found a hierarhial om-

munity tree with multiple hierarhy levels. This suggests that either the Bayesian

information riterion is too loose a ondition for hoosing the number of splits,

or the energy funtion used for evaluating eah division of nodes to bloks is not

suitable for this problem. Either way, more researh is needed to verify that the

lower levels of the hierarhial ommunity trees inferred by blok diagonalization

are not just artefats of the method.

3.3.6 Hierarhial ommunity detetion vs. phylogeneti

trees

A phylogeneti tree is a representation of the evolutionary relationships between

samples having a ommon anestor. The sampled organisms are represented by

leaves of the tree and inner nodes of the tree represent the most reent ommon

anestors of their desendant nodes in the tree.

Algorithms used for building phylogeneti trees an be divided into harater-

based methods and distane-based methods. The �rst lass uses genomes of two

nodes to onstrut the genome of their last ommon anestor, whih is the parent
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(a) Before (b) After

Figure 3.4: The NSA distane matrix of 834 samples. Colors indiate the distane:

smallest distanes are denoted by red and largest distanes by blue. Panel a)

shows the distane matrix before reindexing. The visible struture is due to the

fat that the indexing is not random, but it follows the sampling loations. The

panel b) shows the distane matrix, whih is reindexed to maximize Equation 3.2

by moving the small-distane elements lose to diagonal.

(a) Before (b) After

Figure 3.5: The randomized (preserving the pairwise allele orrelations) NSA

distane matrix of the 586 samples from western Mediterranean. Colors indiate

the distane: smallest distanes are denoted by red and largest distanes by blue.

In panel a), the indies are random and in panel b), the matrix is reindexed to

maximize Equation 3.2 by moving the small distanes lose to diagonal.

node of those two nodes in the phylogeneti tree. Distane based methods, on the

other hand, use genomes only to alulate the distanes between all leaves of the

tree. After that, the distanes from anestral nodes to other nodes are inferred

from the original distane matrix of the samples, and the genomes of anestral

nodes are not expliitly onstruted. The harater-based framework often leads

to better phylogeny trees, but also to omplex ombinatorial problems. Distane-

based methods are mostly more simple lustering algorithms, whose results are

used as starting points of heuristi algorithms for harater-based methods.

Phylogeneti distane-based methods are similar to ommunity detetion meth-
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the orresponding ommunity, and the oloring of the pie harts orresponds to

geographial division of the nodes to west (yellow), enter (blue) and east (red).

ods for dense weighted networks in the way that both try to �nd hierarhial

struture in distane matries. In addition, distane-based phylogeneti methods
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are basially entroid-lustering methods, and in that sense resemble general lus-

tering methods used for weighted networks. However, due to the di�erent starting

points of phylogeny tree and ommunity detetion methods, there are some dif-

ferenes: Phylogeneti tree onstrution methods mostly try to �t a biologially

motivated evolution model to the distane matrix, whereas network lustering

methods are more generi, and typially do not expliitly assume that the data is

based on any model. In addition, phylogeny lustering methods assume that the

lustered matrix is a distane matrix, but network lustering methods an use

any sparse matrix as a starting point. Lastly, the nodes in the phylogeny trees

are splitted until no further divisions are possible, whih is not the ase for most

of the hierarhial ommunity detetion methods.

As an example of a distane-based phylogeny tree building method, a simple, but

fairly popular method, UPGMA [28℄, is used for omparing the results of network-

based hierarhial ommunity detetion methods to a phylogeneti tree. The aim

of this omparison is to see if the ommunity detetion methods really detet

more aurate or meaningful strutures. This should be the ase, as the objetives

behind ommunity detetion methods are di�erent of those of phylogeny methods.

Note that the hoie of the phylogeny tree method is motivated by the simpliity

of the UPGMA algorithm, and other popular algorithms suh as neighbor-joining

[49℄ ould have been used as well.

UPGMA

UPGMA (Unweighted Pair Group Method with Arithmeti mean) is a hierar-

hial agglomerative lustering method ommonly used for building phylogeneti

trees using distane-based geneti data. It starts by reating a luster Ci for eah

sample i, whih are the leaves of the phylogeny tree:

Ci = {i}. (3.5)

The algorithm ontinues by ombining two lusters having the smallest distane

between them. This is repeated until there is only one luster left. The distane

between lusters is de�ned as the mean distane between their onstituent nodes:

d(C1, C2) =
1

|C1||C2|

∑

i∈C1,j∈C2

d(i, j), (3.6)
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where d(i, j) is the geneti distane between nodes i and j.

Edge lengths in the phylogeneti tree produed by UPGMA are alulated by

assuming that the speies have developed with the same speed after eah division,

whih is know also as the moleular lok assumption. This leads to de�ning the

edge lengths in suh a way that the sum of edge lengths along the path from a

leaf to any inner node does not depend on the leaf. This means that every inner

node has a height in the tree whih equals half of the distane between the two

hildren of that node. The height also orresponds to the evolutionary age of the

nodes. The leaves, whih have been observed in urrent time, have a height of

zero, and the root is the oldest node.

Figure 3.8: The phylogeny tree produed by UPGMA and the NSA distane ma-

trix. The size of eah node is relative to the size of the orresponding ommunity,

and the oloring of the pie harts orresponds to geographial division of the

nodes to west (yellow), enter (blue) and east (red).

Figure 3.8 shows the resulting phylogeneti tree when the UPGMA is applied to

the NSA distane matrix. Nodes of the tree have been olored with respet to

the large-sale geographial divisions. The west-east leavage is learly visible in

the UPGMA tree, and the eastern and entral nodes are perfetly divided into

their own lusters. The phylogeneti tree resembles more the k-lique perolation

trees of Figures 3.2 and 3.3 than the blok diagonalization tree of Figure 3.7, as

the shape of the UPGMA tree is unbalaned. This shape is aused by the large

western luster breaking apart by splitting into one small and one large luster at

eah hierarhy level. Hene this method does not provide any meaningful infor-

mation on the luster struture within the western nodes, although it aurately
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detets the east-west leavage.

3.4 Comparing ommunity detetion methods

The problem of omparing ommunity detetion methods is twofold: omparing

the performane of ommunity detetion methods and omparing the similarity

of ommunity strutures. As disussed earlier, deteting ommunities is not a

straightforward problem mainly beause no universal de�nition of a ommunity

exists. The same problem is enountered in a slightly di�erent form when om-

munity detetion methods are ompared. Comparing the performane of two

ommunity detetion methods is just a variation of the ommunity detetion

problem, and omparing the similarity of two ommunity strutures is only pos-

sible if the underlying de�nitions of a ommunity are ompatible. Otherwise, the

whole question of similarity of two ommunity strutures an be ill-posed.

Comparing the performane of two ommunity detetion heuristis is straight-

forward if the heuristis share the same de�nition of a ommunity. However,

it is impossible to ompare the performane of two ommunity detetion algo-

rithms without de�ning ommunities a priori, beause solving the problem of

performane omparison would lead to a solution of the problem of ommunity

detetion. A omparison method whih is able to selet the better one of any

two ommunity strutures with respet to performane will immediately indue

a de�nition of a ommunity, beause the method an be used to selet the best

ommunity struture given any network. As the number of possible ommunity

strutures in any �nite network is also �nite, the best ommunity struture with

respet to the omparison method always exists. An alternative approah to

omparing the performane of ommunity detetion methods is to use networks

for whih ommunity strutures are de�ned beforehand. This way, the similarity

of the ommunity struture produed by any ommunity detetion method and

the prede�ned ommunity struture an be used as a benhmark of performane

of the method.

Comparing similarity and �nding di�erenes in ommunity strutures are non-

trivial tasks, and the di�ulties enountered in those tasks an be traed bak

to the list of ambiguities in de�ning ommunities. Take the lique perolation

method and the blok diagonalization method as an example. The blok diago-
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nalization method always assigns eah node to a single ommunity, whereas the

lique perolation method allows overlapping ommunities. Thus, it is impossible

for a ommunity struture deteted by the blok diagonalization method to be

exatly similar to one ontaining overlapping ommunities deteted by the lique

perolation method, and the whole onept of similarity between the strutures

deteted by these two methods beomes ambiguous.

The ommunity detetion methods used in this Thesis all produe trees repre-

senting hierarhial ommunity strutures. A simple omparison sheme for two

hierarhial ommunity strutures is to ompare single levels of hierarhy at a

time. However, two otherwise very similar hierarhial ommunity strutures an

appear to be very di�erent to this naive omparison method, if the two levels

hosen for omparison orrespond to di�erent strutural sales in the network. In

addition, trying out all the possible ways of hoosing a level in a hierarhy tree

might not be omputationally feasible. A better approah would be to inorporate

the whole hierarhial ommunity struture to the omparison.

Despite the problems in omparing ommunity detetion methods, some ompar-

isons are made in this Thesis for the ommunity strutures produed with the

methods introdued in the previous Setion. We begin by omparing single levels

of hierarhial ommunity strutures using visual omparison methods. This al-

lows us to roughly ompare the the otherwise inompatible methods suh as the

lique perolation and blok diagonalization. After that, the performane of the

blok diagonalization method is evaluated by omparing similarity of the om-

munity struture deteted by it to the large-sale geographial division of nodes

using the mutual information framework. Finally, a phylogeneti tree produed

by the UPGMA is ompared to the ommunity struture produed by the blok

diagonalization method.

3.4.1 Visualization using MST

A straightforward way to visualize ommunity struture is to visualize the network

suh that the olor of eah node orresponds to its ommunity. Using this ap-

proah, Hernández-Garía et al. [29℄ visualized the geneti similarity network of

Posidonia oeania using the 37 di�erent geographial loations as ommunities.

They used the maximum spanning tree for alulating the layout for the nodes.

In the resulting plots, nodes from same loations formed groups, illustrating that
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smallest distanes are mostly found inside the sampling loations and only rarely

between two nodes from separate loations.

Plotting multiple ommunity strutures side by side using the same layout of

nodes for all plots an be used to visually ompare the similarity of the stru-

tures, and to identify where the ommunities di�er. In this Thesis, MST-based

visualization is used to ompare ommunities formed by di�erent ommunity de-

tetion methods. Although this visual omparison is mostly free of assumptions

made by the ommunity detetion method, and thus avoids some of the problems

related to omparing ommunities, other problems still remain.

The �rst problem is the limited olor sale. Only a few ommunities an be pre-

sented in a way still visible to the eye, whih limits the hoie of hierarhy level in

the ommunity struture. This leads to a bigger problem, where hoosing single

hierarhy levels from two hierarhial divisions might produe two similar divi-

sions or two very di�erent divisions depending on how the hoie is made. This

problem is also enountered later when using mutual information to ompare

ommunity strutures, and it is disussed in detail in that ontext. The number

of di�erent olors, and thus the maximum number of di�erent ommunities visible

at the same time, was set to six. The MST of Figure 3.9 displays a division of

nodes based on geography and ommunities deteted with the blok diagonaliza-

tion method, the k-lique perolation method, and the edge perolation method.

The large-sale geographial orrelations are learly visible in the �gure, as the

western, entral and eastern nodes form distint groups. The western and eastern

parts are well separated, but the entral nodes seem to be somewhat mixed with

the western nodes. The fat that some of the entral nodes are far away from eah

other on the MST does not neessarily mean that they are far away from eah

other genetially, but ould just be an indiation that the entral nodes are very

lose to the western nodes and the MST is somewhat random for that area. The

west-east leavage is visible for all of the three ommunity detetion methods,

although the perolation methods have already splitted the east to two parts at

the hosen level of hierarhy.

MST is a useful visualization tool for networks having a lear struture, like

the west-east leavage observed in geneti population struture of P. oeania.

In suh lear ases, MST visualization an give an overview of the ommunity

divisions. However, if the MST is unstable or not unique, visualizations might

beome hard to interpret or even misleading. More quantitative methods for
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(a) BD NSA (b) 3-lique perolation

() Edge perolation (d) Geographial

Figure 3.9: Visualizations of maximal spanning trees of the NSA distane network

of Posidonia oeania, where nodes have been olored aording to various divi-

sions: a) blok diagonalization, b) k-lique perolation, ) edge perolation and

d) geographial ommunities. For the perolation methods, only nodes belonging

to the six largest ommunities are olored, whereas white nodes belong to smaller

or no ommunities.

omparing similarity of ommunity strutures are learly needed.

3.4.2 Normalized mutual information

Mutual information is an information-theoreti tool [50℄ whih an be used for

omparing similarity of two divisions of nodes into ommunities [51℄. In order

to use the mutual information framework, ommunity divisions must �rst be

transformed to random variables having disrete probability distributions. A

division of nodes to ommunities an be transformed to a probability distribution
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of hitting eah ommunity when a node is hosen with uniform probability. For

two divisions, the underlying set of nodes is assumed to be the same, and the

mutual information answers the following question: if a node is hosen at random

and the ommunity of that node in one division is known, how muh information,

or entropy, does that knowledge arry about the ommunity of the same node in

the other division of nodes to ommunities?

Mutual information an be formalized for a graph G(V,E) and two of its parti-

tions A and B by de�ning the onfusion matrix N suh that

Nij = |{v|v ∈ V
A

i
∧ V

B

j
}|, (3.7)

where V
A

i
is the ommunity i in partition A and V

B

j
is the ommunity j in par-

tition B. Let us denote by A a random variable depiting hoosing a ommunity

from partition A, if a node is uniformly randomly hosen from V . With these

notations, the probability mass funtion of A beomes

pA(i) =

∑
j
Nij

|V |
. (3.8)

The respetive joint probability mass funtion is

p(i, j) =
|V |Nij

(
∑

i
Ni)(

∑
j
Nj)

. (3.9)

The joint probability mass funtion is used in the de�nition of the mutual infor-

mation of the two ommunity strutures A and B:

I(A; B) =
∑

i∈A

∑

j∈B

p(i, j)

pA(i)p(j)
. (3.10)

The problem with using mutual information is that two mutual information values

are not neessarily omparable, as they are not normalized, and the result depends

heavily on the entropies of the two divisions. The normalized mutual information

an be de�ned as

In(A; B) =
I(A; B)

0.5(H(A) + H(B))
, (3.11)

where H(A) and H(B) denote entropies of partitions A and B.

The mutual information of two random variables tells how muh one random

variable's entropy is redued if the other random variable is known. Mutual
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information is thus relative to the entropies of the two random variables. Nor-

malized mutual information tells how muh this hange in the amount of entropy

is relative to the mean of the entropies of the two random variables. This ensures

that the normalized mutual information is always between 0 and 1, and makes it

easier to ompare ases where the underlying entropies di�er. Comparing unnor-

malized values of mutual information would only show the overall di�erene in

entropies. This would be the ase, e.g., for di�erent ommunity hierarhy levels

where the entropies at the lower levels would always be bigger than at the upper

levels, and the partitions of the upper levels would have smaller values of mutual

information than those of the lower levels.

3.4.3 Comparing ommunity detetion methods and geog-

raphy with NMI

Communities deteted with various methods were seen to orrelate with the ge-

ographial divisions of nodes to west, enter and east when visualized using the

MST of Figure 3.9. The division of nodes to loations was also seen to orre-

late with the geneti LM distane [29℄. Although these orrelations were learly

visible in MST visualizations, it was also lear that the orrespondene was not

perfet. The NMI framework is now used to quantify these orrelations in both

ases.

Calulating the mutual information between results of a hierarhial ommunity

detetion method and the large-sale geographial division is not straightforward

for two reasons. First of all, the mutual information approah requires division

of the nodes into groups, whih an be done for hierarhial ommunity struture

tree by looking at one level of the hierarhy at the time. This is done for the

blok diagonalization of the NSA distane matrix by de�ning hierarhy levels

with respet to the number of splitting events. For example, at the third level

of hierarhy, all ommunities are three links away from the root node. This is of

ourse not a unique nor neessarily the best way to de�ne the hierarhy levels.

One ould, for example, de�ne a distane between the nodes in the tree. The

distanes ould be related to the blok diagonalization proess, or use some extra

biologial information. Trying out all the ways of dividing the tree into hierarhy

levels would lead to a very large number of di�erent ombinations of ommunities,

and would not be a feasible solution. The seond problem is a variation of the

�rst: geography an also be hierarhially divided to di�erent regions, subregions

50



and so on, and the number of suh ombinations is even larger for geographial

data than it is for a hierarhial tree. Multiple hierarhy levels are not used here

for the geographial loations. Instead, only two divisions are used: the �rst is

the most aurate geographial division feasible, that is, the division of nodes

aording to individual sampling loations. The seond is the rude division of

nodes to the three areas disussed earlier: west, enter and east.

The normalized mutual information for eah hierarhy level of ommunity struture

deteted with the blok diagonalization method is shown in Figure 3.10. The

normalized mutual information of node loations and hierarhy levels is seen to

inrease as funtion of hierarhy level in panel a). This means that the last divi-

sions made by the blok diagonalization method are not ompletely random with

respet to the loations. However, the blok diagonalization method was seen to

�nd ommunities in randomized data, whih might suggest that the last levels of

the tree might be noisy also for the real data.

(a) all loations (b) 3 division

Figure 3.10: Normalized mutual information of ommunities produed with the

blok diagonalization method using the NSA distane matrix and a) the loations

of the speimen and b) division of the nodes to west, enter and east. The

hierarhy level in the ommunity struture is on the horizontal axis and the NMI

on the vertial axis. The NMI between the two geographi division (west-enter-

east, sampling loations) is approximately 0.37.

The NMI of the large-sale geographial division and the hierarhial ommunity

struture, on the other hand, is at its maximum after the �rst split to bloks,

and is seen to slowly derease thereafter, almost saturating at the last levels of

hierarhy. This behavior an be explained with the help of Figure 3.7 illustrating

the branhing proess. The �rst split separates west from enter and east, and

the enter and east separate only at the next level. As the west is more densely

sampled, it has more weight on the value of NMI, and thus the seond branhing
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event separating the east and the enter is not enough to raise the overall value of

NMI, as it also further divides the western omponent. It is worth notiing that,

as disussed earlier, the number of branhing events might not be the optimal

way of de�ning di�erent hierarhy levels. This is highlighted by the fat that

if a ommunity division is hosen from the hierarhy tree in suh a way that

ommunities with mainly western nodes are hosen from the �rst level and the

rest from the seond level, as illustrated in Figure 3.11, the overall NMI improves

from the original �rst level value of 0.468 to a value of 0.527.

Figure 3.11: The �rst two levels of the ommunity hierarhy tree produed by

detetion using the blok diagonalization method using the NSA distane mea-

sure. The green shading represents an alternative way of hoosing a division of

nodes to ommunities from the tree. This partiular hoie re�ets better the

division of nodes to the three geographial groups: west, enter and east. The

NMI of this division and the large-sale geographial division is 0.527, whereas if
the original levels of the tree would be used, the orresponding values would be

0.468 for the �rst and 0.446 for the seond level.

3.4.4 Comparison to UPGMA

A phylogeny tree onstruted with the UPGMA was ompared to the division of

the nodes to ommunities at the �nal level of blok diagonalization using NMI.

A height was de�ned for eah node in the phylogeneti tree omputed with the

UPGMA as a number relative to the age of the nodes. The leaves are the youngest

and have height (age) of zero, and the root of the tree is the oldest node thus

having the largest height (age). In the hierarhial lustering framework, the

height an be interpreted as the hierarhy level of the tree. Figure 3.12 shows

the NMI of the blok diagonalization ommunity struture and the ommunity

struture extrated from the last level of the phylogeny tree as a funtion of
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minimum aepted height. This means that nodes below the minimum aepted

height are disarded and the leaves of the tree are onsidered as the ommunity

division at the respetive threshold level.

The NMI for the blok diagonalization ommunities and the UPGMA tree is seen

to slightly inrease when the threshold is inreased from its minimum value. Its

maximal value of 0.61 is attained at a threshold of approximately 0.25. Thereafter

the NMI values begin to derease. This means that the blok diagonalization

ommunities and the UPGMA tree explain approximately 61 perent of eah

other's entropies at the maximum. The UPGMA tree orresponds better to the

ommunities produed with blok diagonalization than any geographial divisions

tested here, but the orrespondene is still far from perfet.

There are two possible reasons for the imperfet orrespondene between the

ommunities produed with blok diagonalization and the UPGMA tree. The

�rst reason is that the topology of the tree produed by the blok diagonaliza-

tion method orresponds well to the one produed with the UPGMA, but the

thresholding sheme for the UPGMA tree fails to produe suitable ommunity

divisions. This explanation is supported by the fat that the value of NMI in

Figure 3.12 remains pratially unhanged for UPGMA threshold values ranging

from 0 to 0.3, whih might suggest that the best level of ommunities ould be

found as a ombination of di�erent thresholds in that range for di�erent branhes

of the UPGMA tree. The seond possible reason is that the biologially motivated

assumptions behind the UPGMA and the more general assumptions about the

ommunities behind the blok diagonalization method lead to genuinely di�erent

ommunity strutures.

3.4.5 Summary

As ommunity detetion methods an in general be divided into two ategories,

loal and global, methods from both ategories were hosen to study lusters in

the geneti struture of Posidonia oeania. The lique perolation method was

hosen as representative of loal methods and the blok diagonalization method

was hosen as the global method. Although both methods have earlier been used

for unweighted networks, they had to be modi�ed to allow ommunity detetion in

dense, weighted networks, and a ompletely di�erent approah to the algorithmi

implementation of the lique perolation method had to be developed.
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Figure 3.12: Comparing the last level of ommunities inferred with the blok

diagonalization method using the NSA distane to the last level of UPGMA tree

with di�erent height thresholds. Thresholding is done in suh a way that nodes

whih are at distane larger than the threshold level from the root are not splitted

any further.

Results obtained using the lique perolation method seemed to be disouraging

as the resolution of the edge weights seemed to be too low, whereas the blok di-

agonalization method produed sensible hierarhial ommunity struture. How-

ever, both of the methods performed well when ompared to the overall west-

entral-east geography. A visualization approah using maximum spanning trees

and a more quantitative approah using the normalized mutual information were

used to ompare the di�erent ommunity detetion methods, a phylogeny tree

method and underlying geography. The omparison methods seemed to su�er

from the fat that a single ommunity division needed to be used instead of om-

paring whole hierarhial trees. Despite of this, NMI was suessful in quantifying

how muh ommunities deteted with the blok diagonalization method orrelate

with the geography, and showing that the UPGMA phylogeny tree performs bet-

ter in explaining these ommunities than the geographial divisions.

Based on these results one an argue that the overall geography is learly re-

�eted in the geneti struture of the sampled P. oeania populations, as the

west-entral-east division was detet by all methods. However, when omparing
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ommunity divisions by any used method to the higher resolution geography (the

37 sampling loations), the NMI values indiate that there is no lear one-to-

one mapping: the deteted lusters orrelate with geography, but do not loalize

within well-de�ned small geographi areas.
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Chapter 4

Conlusions and future researh

In this Thesis, the possibility to use the network framework and network-based

methods to unveil the geneti population struture of Posidonia oeania has been

ritially assessed using several tehniques, suh as the minimum spanning tree,

k-lique perolation, blok diagonalization and normalized mutual information.

The hoie of the proper geneti distane measure was seen to be ambiguous and

aknowledged to play an important role, as it serves as a link between biologial

data and the network abstration. In this Setion, the main results and onlu-

sions of this Thesis are olleted together, and suggestions for solving some of the

enountered problems are given.

Two geneti distane measures with di�erent bakground assumptions were tested

and their e�ets on the following network analysis disussed. The non-shared al-

leles distane (NSA) assumes that variation between two individuals is due to

reombination of prede�ned alleles, and the linear Manhattan distane (LM)

assumes that variations are due to mutations in the lengths of the mirosatel-

lite repetitions. The NSA measure is loser to the population dynamis view

and works well on loal, population-level sales. The LM distane tends to be

more aurate for longer-timesale hanges, and is loser to the phylogeneti tree

perspetive as no reombinations are assumed to happen. This e�et an also

be seen in the ROC urve omparing the two distanes to geographial divisions

at di�erent sales in Figure 2.7. The NSA distane was hosen to be the main

distane used in this Thesis, but it might be worth the e�ort to pursue a more

e�ient distane measure working at multiple hierarhy levels. The distane mea-

sure ould for example be a ombination of NSA and LM type distanes giving
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more weight to the NSA part at small distanes and more weight to the LM part

at large distanes.

The k-lique perolation method with thresholding was seen to fail to deliver good

results, mainly due to the lak of resolution in edge weights. However, orrelations

with large-sale geography were learly present in the resulting ommunities. A

new algorithm was developed for the the k-lique perolation method in order

to detet hierarhial ommunities in dense weighted networks. Simultaneously,

this algorithm was proven to be very fast for sparse networks and low values of k.

Nevertheless, results of ommunity detetion with the new algorithm su�er from

the biased sampling sheme of the data, as all the edges inside the western parts

of the Mediterranean have far higher weights than almost any edges between the

large-sale geographial areas. The k-lique perolation method thus seems to be

almost useless for suh ases, and there are no trivial solutions to this problem.

Inreasing the lique size k would not improve the resolution problems, and would

severely harm algorithmi performane. One way to inrease the resolution would

be to aept the randomness aused by evaluating the ommunity struture when

an arbitrary number of edges is added. The resulting tree ould be then sampled

multiple times with the same number of added edges, but with di�erent permu-

tations of edges with the same weights. Consensus tree methods [54℄ ould then

be applied to the set of found trees.

The blok diagonalization method, modi�ed from the one introdued by Sales-

Pardo et al. [47℄ for deteting ommunities, seemed to work better than the

k-lique perolation method for geneti similarity networks of Posidonia oeania.

Heterogeneous sampling did not ause trouble for the blok diagonalization method,

and the resulting hierarhial tree was more balaned than the ones produed by

the k-lique perolation method and the UPGMA. The geneti struture pre-

dited by the blok diagonalization method seemed to orrelate with geography

on both large and small sales (see Figures 3.7 and 3.10). Despite this suess, the

blok diagonalization method has some problems: The method does not produe

any branh lengths for the hierarhy tree, whih severely limits the use of the

hierarhy, or an even ause misleading results if the absene of branh lengths

is solved by assigning a same length to eah branh. Another problem with the

method is that it produed hierarhial struture even for randomized null mod-

els, whih might indiate that the lowest ommunities in hierarhy trees might

not be robust or reliable. This over�tting might be solved by using a better model

for seleting the bloks after the reindexing proedure, as it seems lear to hu-
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man eye that there are no distint bloks in panel b) of Figure 3.5. Furthermore,

the method is omputationally expensive, as methods suh as simulated anneal-

ing needs to be used for both reindexing the distane matrix and for deteting

bloks in the matrix. More work on these problems is learly needed before the

blok diagonalization method an be reliably used for ommunity detetion in

this ontext.

Mutual information an be used as a tool for omparing similarity of two division

of same set of elements, and has a solid basis in information theory. Normalized

mutual information (NMI) has been earlier used to ompare ommunity strutures

found by di�erent ommunity detetion methods [51℄. The NMI was used in this

Thesis to ompare similarity of ommunity strutures, but hierarhial strutures

aused problems, as a single hierarhy level or division of nodes to ommunities

needs to be hosen in order to use the NMI framework. This is problemati

speially for the blok diagonalization trees, where there are no branh lengths,

and the hoie of a proper hierarhy level is ambiguous. Topologial measures for

the similarity of trees are used in phylogeny and ould possibly be also used in

the ommunity detetion ontext with some alterations. Similar problems were

enountered when ommunities were ompared to geographial divisions. A ROC

urve of geographial distanes and ommunities might be more illustrating than

alulating NMI for the two geographial divisions used here.

Although the network perspetive for studying omplex phenomena related to bi-

ologial systems at the borderlines between population biology and phylogenetis

seems promising, some aution is needed. Network studies are not ompletely free

of biologial assumptions that seem to restrit the usage of traditional methods.

Network-based methods have both expliitly de�ned assumptions, suh as the

hoie of geneti distane measure, and impliit assumptions, suh as the ones

made by ommunity detetion algorithms. The network perspetive seems to be

best suited for exploring new data, but results an be somewhat unreliable or

even misleading if generi network methods are used without aution. It would

be advisable to use multiple network methods or some traditional methods to

verify any results produed with network-based methods.
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Appendix A

Networks: de�nitions and basi

measures

The terms �network� and �graph� an be used interhangeably, although it is

typial to speak of omplex networks instead of omplex graphs when referring

to networks/graphs with non-trivial struture. In this Thesis �network� refers to

an undireted graph that doesn't have multiple or self edges. Mathematially

suh a graph G(V,E) onsists of a �nite set of verties V and a set of edges

E ⊂ V xV \ {(v, v)|v ∈ V }. When an index is given for eah vertex in V ,

the graph G(V,E) an be presented as an adjaeny matrix A, with Aij = 1 if

(vi, vj) ∈ E, and Aij = 0 otherwise.

In many ases it is useful to assign some weight to eah edge of the network.

This de�nes a weighted graph or weighted network G(V,E,w), where w is some

funtion from the set of edges E to positive real numbers: w : E → ℜ+. This an

also be represented as a weight matrix where the absene of an edge is interpreted

as a zero weight: Wij = w((vi, vj)) if (vi, vj) ∈ E and Wij = 0 otherwise.

The degree k for eah node i is de�ned as the number of neighbors it has:

ki =

|V |∑

j=1

Aij. (A.1)

59



In a weighted network an analogous measure, the strength, is de�ned as

si =

|V |∑

j=1

Wij. (A.2)

Another useful single-node harateristi is the lustering oe�ient [56℄. It is

a measure originating from soial sienes where it measures the probability of

one's friends also being friends. Suh a transitivity measure is also generally

useful and an be de�ned in a graph for node i as the number of triangles where

the node partiipates divided by the maximum possible number of suh triangles

given the node's degree:

ci =
ti

1
2
ki (ki − 1)

=

∑
j,k

AijAjkAki

ki(ki − 1)
. (A.3)

If the lustering oe�ient is de�ned this way, its value will depend heavily on the

degrees of the neighboring nodes. To remove the e�ets of degree orrelations,

the lustering oe�ient for node i an be de�ned as the number of triangles it

forms divided by the maximum number of triangles it an form given its and its

neighbors degrees [57℄.

The lustering oe�ient an also be de�ned for weighted networks so that the

weights a�et its value [58�64℄. This approah doesn't seem to be very fruitful as

the value of the oe�ient beomes very degenerate and hard to interpret [65℄.

Two nodes i and j have a path between them if there is a sequene of nodes

pij = {vk}k=1,..,n for whih v1 = vi, vn = vj and Ak,k+1 = 1 for every k = 1, .., n−1.

The length of a path is then n − 1 and there is a (possibly non-unique) shortest

path p̂ij between every pair of nodes. Two nodes are said to be in the same

omponent if there is a path between them. The diameter D(G) of the network

is de�ned as the maximum of the shortest path lengths between any two nodes

in the network:

D(G) = max({|p̂ij| − 1|i, j ∈ V }). (A.4)

A network G is said to be a small-world network [56℄, if the average path length

〈p〉 is small ompared to the network size, but the average lustering oe�ient

〈c〉 is large.

The betweenness entrality of node i is the number of shortest paths going through
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the node. If a shortest path is not unique, its ontribution to betweenness en-

trality is divided by the number of shortest paths between the same nodes:

Bi =
∑

j 6=i6=k

|{p̂jk} ∩ {p̂|vi ∈ p̂}|

|{p̂jk}|
. (A.5)

A lique of size k, is denoted here as Ck, is a set of nodes in whih every pair of

nodes has an edge between them. Ck′ is a sub-lique of Ck, if it is a lique and

Ck′ ⊂ Ck. Maximal lique is a lique in graph G whih is only a sub-lique of

itself.

A subgraph G(V ′) = G
′(V ′

, E
′) of a graph G(V,E) given a set of verties V

′ is

a graph, for whih V
′ ⊂ V and E

′ = {(v1, v2)|(v1, v2) ∈ E ∧ v1, v2 ∈ V
′}. An

intensity [59℄ an be de�ned for a weighted subgraph G
′(V ′

, E
′
, w):

I(G′(V ′
, E

′
, w)) =

∏

e∈E′

w(e)|E
′|−1

. (A.6)

A tree is a graph with no yles. This means that there is an unique path between

every node of the tree.

A spanning tree of a graph G is a tree that has the same set of nodes as the graph

G. If the graph is not a tree, the spanning tree is not unique for that graph, and

the set of spanning trees is alled the spanning tree forest for the graph G.

A minimum/maximum spanning tree (MST) for a weighted graph G is the tree

in the spanning tree forest of G, for whih the sum of edge weights is mini-

mal/maximal. Note that the MST might not be unique if there are multiple

edges with similar weights in G.
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Appendix B

A sequential thresholding algorithm

for k-lique perolation

The algorithm given by Palla et al. in the paper introduing the lique perola-

tion method [42℄ relies on �nding maximal liques in given networks, enumerating

them and then onstruting an overlap matrix with eah element giving the num-

ber of shared nodes with two liques. The matrix an be interpreted as a weight

matrix, where the nodes are the maximal liques in the network, and there is a

link between two nodes if the orresponding liques share a sub-lique. Removing

the weights, whih orrespond to the sublique sizes, of size smaller than desired

lique size k − 1 yields a network whose omponents orrespond to k-lique om-

munities. Thus ommunities for all lique sizes an be found by adding the edges

to the maximal lique network sequentially starting with the largest, and then

observing merging of the omponents.

The maximal lique algorithm would orrespond to a sweep in the vertial or

topologial diretion in Figure 3.1, and as suh has some ritial limitations when

used for dense weighted networks: First, it has to �nd the maximal liques, whih

is an NP-omplete problem and thus all known algorithms sale exponentially.

Seond, it has to be run again from the beginning for eah weight threshold level,

whih an be a problem when the number of suh levels is large. A solution to

these problems would be to �nd an algorithm that would sweep the same spae

horizontally or in the weight threshold diretion, as �nding all liques of given

size is a polynomial problem and in most ases only a few smallest lique sizes

are used [43℄. This would mean that the algorithm would be required to run only
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one for eah desired lique size and the polynomial saling exponents would not

be very large. Suh an algorithm was developed by the author and oworkers

with the Posidonia oeania data set in mind, and was used for all the k-lique

perolation studies in this Thesis. The algorithm is desribed below.

B.1 Desription of the algorithm

The ommon algorithmi solution for edge perolation analysis is to start from

an empty network, reonstrut the original network by adding the edges one by

one, and update the omponent struture after eah addition. This way, the only

updating needed to be done is the joining of two omponents orresponding to

the nodes at the eah end of the edge, whih an be done by using disjoint-set

forests [66℄. When the nodes in the omponents are listed, that is the omponents

are evaluated, we need to know the omponent where eah node belongs to. For

both of these operations the amortized time is related to the inverse Akermann

funtion [66, 67℄, whih is in pratie a onstant fator. This makes the whole

algorithm almost linear with respet to the number of added edges. Also the

memory onsumption is very low as the algorithm only keeps the disjoint-set tree

in the memory, and there is no need to keep the entire network in memory. Thus,

memory use sales linearly with respet to the number of nodes in the network.

In terms of liques, edge perolation is equivalent to 2-lique perolation, where

2-ommunities orrespond to omponents in the graph. Thus edge perolation

algorithms are a good starting point for a threshold-wise k-lique perolation

algorithm, as it should redue to one of the fast edge perolation algorithms

when k = 2.

B.1.1 K-lique perolation as edge perolation

The new sequential thresholding algorithm for k-lique perolation is based on

edge perolation algorithms. This generalization requires a few observations to

be made. First of all, a k-lique ommunity an be interpreted as a omponent

in a bipartite graph between k-liques and k − 1-liques, where there is an undi-

reted edge from eah k-lique to eah of its subliques of size k − 1. In this

network, two adjaent k-liques have a link to the same k − 1-lique and thus a
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path between them. Now, as k-lique ommunities are de�ned as maximal sets

of k-liques adjaent via k − 1-liques, they orrespond to omponents of this

bipartite graph. As the omponents of any bipartite network orrespond to the

omponents of any unipartite projetion of that network, we an study k-lique

perolation by traking down omponents in the k − 1-lique network, whih is

the unipartite projetion of the bipartite network. Hene, one an, analogously

to edge perolation, build the k − 1-lique network sequentially and monitor its

omponent struture in the proess.

As k-liques orresponds to k edges and k − 1-liques are represented by nodes

in the unipartite k − 1-lique network, unweighted lique perolation analysis is

equivalent to deteting all k-liques in the original network and adding them to

the k − 1-lique network in arbitrary order. The omponents of the k − 1-lique

network orrespond to the k-lique omponents of the original network after all

k-liques are added. In order to use the same algorithm for weighted lique pero-

lation [44℄, the only modi�ation needed is to sort the list of k-liques with respet

to their intensities before adding them to the k − 1-lique network. When the k-

liques are added in inreasing order with respet to their intensities, i.e. weights,

the weighted k-ommunities an be evaluated at any intensity threshold during

the addition proess analogous to weighted edge perolation.

In the hierarhial lique perolation method the weighted lique perolation

method was not used as a staring point. Instead, lique ommunities were

searhed for eah value of edge threshold in the original network. Thresholding

the original network and applying the lique perolation method for eah level of

edge threshold is equivalent to adding the k-liques to the k − 1-lique network

in the order they appear in the original network when the edge threshold level is

raised, and evaluating the emerging k-ommunities in the k − 1-lique network

after eah edge threshold level. There are two ways of �nding the k-liques in

the order they are formed in the original network when the edge threshold is

inreased. The �rst way is to �nd all k-liques, as is done in weighted lique

perolation, and assign the smallest edge weight in eah lique as a weight of

that lique. Sorting the liques with respet to these minimal edge weights will

then result in the desired order for the liques. The seond way of building the

list of sorted k-liques is to follow the edge perolation proedure for the original

network and to add newly formed k-liques after eah edge addition to end of the

list.
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Finding k-lique ommunities using the unipartite k − 1-lique network when

the sequene of k-liques is found is known to sale almost linearly in time with

respet to the number of k-liques in the network and to sale linearly in memory

onsumption with respet to the number of k−1-liques in the network. Finding

and sorting the k-liques in a general ase sales log-linearly in time and linearly in

memory with respet to the number of k-liques in the network. Thus the sorting

part of the algorithm has in the worst ase a muh poorer performane than the

rest of the algorithm. This is disussed in the next subsetion, and the algorithm

for �nding the liques in their order of emergene in the edge thresholding proess

redues the workload dramatially.

Algorithm 1 Pseudoode for �nding k-lique ommunities when the sequene of

k-liques is known. This done by keeping trak of the omponents of a k−1-lique
network with the disjoint-sets forest.

for K in k-lique sequene do

kr=a sublique of K

for kr2 in subliques of K (not kr) do

join in disjoint-set tree: kr and kr2

end for

end for

The alternative unipartite projetion

Notie that the unipartite projetion in the lique perolation algorithm ould be

de�ned by removing k−1-lique nodes instead of k-lique nodes without a�eting

the results of the algorithm. This was not done for two reasons: First of all, there

are n times more k-liques in the worst ase than k− 1 liques when the network

size n is a onstant. This is also a valid point beyond the worst ase, as for example

there are more edges (2-liques) in most networks than nodes (1-liques). The

seond reason is that adding a k-lique to the unipartite k − 1-lique network

requires only ombining all subliques of the k-lique to the same omponent. As

�nding the eah sublique takes a onstant time, the required workload is k − 1

times the e�ort required by the disjoint-set forest. On the other hand, adding a

k−1-lique to the k-lique network would require �nding all k-liques having the

k − 1-lique as a sublique. Two straightforward solutions to this would be to

either keep a lookup table of suh liques in hand, whih is essentially equivalent

of keeping the whole bipartite network in memory, or go through all the n possible

k-liques for eah k − 1-lique. Neither of these alternatives are good, but more

ompliated algorithms might exist somewhere between these two.
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B.1.2 Finding the sequene of k-liques

Finding all k-liques and sorting them an beome a bottle nek for the disussed

weighted lique perolation algorithm. However, �nding k-liques their order of

emergene when the weight threshold is inreased an be done muh faster. The

proedure starts from an empty network and reonstruts the original network by

adding the edges one by one, as is done in edge perolation algorithms. At eah

step when an edge e = (i, j) is added to a network, the new k-liques forming

as a onsequene of this addition an be found in the following way: First, �nd

all the ommon neighbors N of i and j. After that, �nd all the k − 2-liques in

the subgraph of those neighbors G(N). When the nodes i and j are added to

these k − 2-liques, they form all the new k-liques born when e is added to the

network.

This approah has three bene�ts over the brute-fore way of �nding and sorting

all k-liques: It does not require keeping all k-liques in memory, but only the

original network and possibly information related to the deteting k−1-liques in

eah subnetwork depending on the algorithm used. It does not require sorting the

k-liques as only the edges need to be sorted. Lastly, the k-lique �nding algo-

rithm an be run simultaneously with the k-lique ommunity �nding algorithm

updating the ommunity struture immediately after eah k-lique is found. This

makes it possible to stop the k-lique searh algorithm at any time in the om-

munity �nding proess. In some ases this is a huge advantage over exhaustive

searh of every k-lique: for example in ER random graphs [53℄ the number of

liques grows as O(pk(k−1)/2) [68℄, where p is the probability that an edge exists.

The k-lique perolation proess an be stopped when all nodes are in the same

ommunity, or even before that, when some other riterion is ful�lled.

B.2 Saling onsiderations

As the new algorithm for �nding k-lique ommunities for eah edge threshold

level an be divided in two parts, the k-lique perolation and �nding the k-lique

sequene, worst ase saling is also studied separately for these parts. It turns

out that the perolation part dominates the time and memory requirements in

the worst ase approximations. If the number of nodes in a network N and the

lique size k are �xed, the worst ase for this algorithm is a full network. This

66



Algorithm 2 Pseudoode for �nding new k-liques formed when an edge is added

to the network. Notie that �nding the k − 2-liques from a subnetwork an be

done by alling this ode reursively for eah edge in the subnet, and by treating

the ases of k = 1 and k = 2 as trivial separate ases.

i,j = nodes of the edge

for l in neighbors of i do

if j is a neighbor of l then

add l to list of ommon neighbors

end if

end for

Gsubnet = subnet of ommon neighbors

for all k-2-liques in Gsubnet do

k-lique=nodes in k − 2-lique, i and j

add k-lique to the list of new k-liques

end for

Algorithm 3 Pseudoode for sequential k-lique perolation with edge weight

thresholding. Algorithms 1 and 2 are used as subroutines.

sort the list of edges in the network

G=an empty network

while stopping riterion for ommunity struture is not ful�lled do

pop edge from the sorted list

get list of new k-liques when the edge is added

add edge to G

update the ommunity struture with the list of k-liques

end while

analysis does not take into aount that the algorithm an be stopped before all

edges are proessed when all nodes belong to the giant omponent.

B.2.1 Finding the k-lique sequene

For the k-lique sequene �nding part of the algorithm, the worst ase of a full

network means that the number of edges the algorithm has to go through grows

as O(N2), and for eah for those edges the number of operations for �nding all

triangles they partiipate grows as O(N). The number of triangles eah edge

partiipates in also grows as O(N), and thus the time to �nd the k − 2 liques in

a subnetwork of nodes at the orners of those triangles grows as O(
(

N

k−2

)
), whih

is the number of possible ombinations of k − 2 nodes in a set of size N . In all,
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the time to �nd the k-liques amounts to

O(N2)(N + O(

(
N

k − 2

)
)) = O(N2)O(

(
N

k − 2

)
) = O(

(
N

k

)
). (B.1)

This is also the number of the k-liques in the network, whih means that any

algorithm listing all the k-liques in any order must perform at least
(

N

k

)
opera-

tions. Thus, in this sense the saling of the algorithm is optimal. Note also that

the saling of the number of k-liques an be written in the following way, when

k is �xed, or N is �xed and large:

O(

(
N

k

)
) = O(

N !

k!(N − k)!
) = O(

N !

(N − k)!
) = O(Nk). (B.2)

Thus, the number of k-liques and the time needed to �nd the k-lique sequene

in the worst ase grows polynomially with respet to network size N when k is

�xed, and exponentially with respet to k when the network size N is �xed.

B.2.2 Finding k-lique ommunities

For the perolation part of the algorithm, the same analysis is more straightfor-

ward, as we an use the results published for disjoint-sets forests [66, 67℄. The

algorithm requires k joining operations in the disjoint-sets tree for eah k-lique,

and if there are K of them in the network, the amortized amount of work has been

proven to be O(αK), where α is the Akermann funtion, whih grows almost

linearly. This means that the perolation part of the algorithm dominates the

asymptotial required omputation time for the desribed worst ase senario,

and the algorithm as a whole is optimal for the task.

Real data an be onsiderably sparser than full networks, and for many dense

networks, the algorithm an be stopped before adding all the links, so the real

omputation times often behave muh better than the worst ase senarios. How-

ever, the real-world networks an loally resemble full networks, and those parts

of the networks are often the ones taking most of the time for the k-lique per-

olation algorithm introdued here. E�ets of dense subnetworks to the overall

omputation time an be approximated by using the above analysis.
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Appendix C

Software toolbox for network

analysis

C.1 Starting point and requirements

Most of the work done for this Thesis is related to using, implementing and

developing methods from the �eld of network analysis. This is a rather new area

of data analysis, and as suh the hoie of omputational tools is limited. This

is a problem espeially when dealing with weighted dense networks, as is done

in this Thesis. Published software usually o�ers solutions to spei� problems

only, and general purpose software pakages were not onsidered suitable for use

in this Thesis. Some suh pakages are listed below:

Pajek A toolbox for network analysis with graphial user interfae. Not easy to

extend and is designed for rather small networks. [69℄

Boost graph library A C++ template library for graphs. Contains very few

tools for statistial analysis. Also not very easy to use and extend as itself.

[70℄

Networkx A Python module designed for network siene perspetive using the

Boost graph library. [71℄

None of the above mentioned pakages for network analysis seemed good enough

for the purposes of the work desribed in this Thesis. Also the methods and ode
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developed for this projet ould be used and extended for other similar projets

in the future. With this in mind, a list of requirements for a software toolbox

was designed:

• The toolbox should have a suitable user interfae for exploratory data anal-

ysis and rapid prototyping. It should be easy to implement sripts on it.

• There should be a possibility to write low level ode for implementing om-

putationally intensive methods.

• The underlying data strutures should be e�ient to allow usage of very

large data sets even in the sripting mode.

• The above point should be true for both dense and sparse networks in suh

a way that the user interfae remains transparent with respet to the type

of underlying data strutures. This means that algorithms implemented for

one should work for both kinds of networks without any hanges.

• The toolbox should be based on a framework whih has already lots of fast

ode (possibly written in some low level language) for most ommon om-

putationally expensive tasks, suh as ommunity detetion and modeling

networks.

• An automati testing framework should be available.

C.2 Spei�ations

A software pakage for network analysis was developed as a part of this Thesis

as other pakages did not ful�ll the above requirements. The losest one was

the Networkx pakage, but among its other problems it was not mature enough,

at least at the time. Despite this, it resembles the software pakage developed

during this Thesis, as both of them are mostly written in Python and have a

C++ library as a bak-end.

The Python [72℄ sripting language was hosen as a front end for the toolbox for

the following reasons: �rst of all, as a high level language it is easy to use and not

as prone to programming errors as for example C is. Also as it is an interpreted

language, it is easy to try out short piees of ode with the interpreter interfae,
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whih is partiularly important in data analysis where detailed spei�ations of

the programs and sripts annot be made beforehand, but the work onsists of

exploring di�erent possibilities. Another reason for hoosing Python is that there

is an extensive set of libraries for most general-purpose tasks suh as plotting [73℄,

numerial analysis [74℄, interative shell [75℄ and sienti� analysis [76℄.

For high performane, the bak-end library for sparse graphs made by Hyvönen

[77℄ was hosen. It has been proven to be able to e�iently handle extremely large

data sets, for example in analysis of mobile phone all networks [7℄. It has also

been proven to be suitable for network analysis in general, and has been used in

the Complex networks group in Laboratory of Computational Siene for several

years for almost all data analysis. This use has also generated large amounts

of ode written for the library ranging from model generation to ommunity

detetion.

The design of the software toolbox tries to follow the guidelines and requirements

set in the previous subsetion. The networking toolbox is organized in suh a way

that the network interfae visible for the user is made with Python. Under that,

the sparse network data struture is the same as in C++ library disussed in the

previous paragraph [77,78℄, and dense networks are implemented with Numpy [74℄

matries. This allows for writing C++ extensions for sparse networks by using

the C++ library. The design is illustrated in Figure C.1.

Figure C.1: Shemati piture of the Network Toolbox.

The design of the network Toolbox tries to enourage the user to follow a devel-

opment yle, whih onsist of the following steps:

1. Explore the problem/data in the Python interpreter using the existing li-

brary and modules.

2. Write an own module or extend an existing one with required funtions in

Python.
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3. Write unit tests for the Python module/funtion.

4. Rewrite the speed/memory ritial parts of the module/funtion with C++.

5. Now all analysis and unit tests an be done again with the C++ implemen-

tation with very small hanges.

The goal of this yle is to allow the researher to mainly use high level sripting

language suh as Python, and minimize the risk of programming errors and loss

of time related to writing large standalone C++ programs. Python also o�ers

an easy interfae to powerful network-related C++ libraries for people who ould

otherwise not use them.
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