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Experimental studies have shown the ubiquity of altruistic behavior in human societies.
The social structure is a fundamental ingredient to understand the degree of altruism
displayed by the members of a society, in contrast to individual-based features, like for
example age or gender, which have been shown not to be relevant to determine the level
of altruistic behavior. We explore an evolutionary model aiming to delve how altruistic
behavior is affected by social structure. We investigate the dynamics of interacting indi-
viduals playing the Ultimatum Game with their neighbors given by a social network of
interaction. We show that a population self-organizes in a critical state where the degree
of altruism depends on the topology characterizing the social structure. In general, indi-
viduals offering large shares but in turn accepting large shares, are removed from the
population. In heterogeneous social networks, individuals offering intermediate shares
are strongly selected in contrast to random homogeneous networks where a broad range
of offers, below a critical one, is similarly present in the population.
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1. Introduction

How cooperative behavior emerges among interacting individuals is a long-standing
problem that has attracted, starting from Darwin, the attention of a large number
of researches [8, 11, 29]. In the context of Game Theory, different mechanisms
and models have been proposed to explain the observed cooperative behavior,
two prominent examples being the Ultimatum Game [12] and the Prisoner’s
Dilemma [3]. Theoretical studies have shown that selection at the individual level
may lead to altruistic behavior [31], in contrast to the general belief that only group
selection can give rise to altruism.

Aiming at understanding the mechanisms leading to altruism as the core of
cooperative behavior, the Ultimatum Game is one of the paradigmatic theoreti-
cal games used to understand their interrelation. The simplicity of this game has

221



May 4, 2009 10:31 WSPC/169-ACS 00217
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allowed to obtain a large set of experimental results that clearly show the presence
of altruistic behavior, in the form of altruistic punishment. Altruistic punishment,
meaning that individuals react to an unfavorable action by an opponent although
the punishment is costly for them and yields no material gain, is a key ingredient
for the explanation of cooperation as it emerges if altruistic punishment is possible,
while breaks down if it is ruled out [10]. The Ultimatum Game consists of two agents
who have to share a given amount of money. One of them, the proposer, makes an
offer on how to share the money to the other agent, the responder. The proposer
can only make one offer. The responder decides whether he accepts or rejects the
offer. If the responder accepts, the money is shared as proposed; otherwise, none
of them get anything. Given that a narrowly rational responder would accept no
matter what he has been offered — something is better than nothing — a narrowly
rational proposer would offer to the responder the minimum amount. However, real
agents behave differently: offers are typically close to a 50–50 ratio and offers below
20% are typically rejected [17, 18, 24].

Recently, an extensive research performed among small societies around the
world [16] has shown that social structure is a key element in determining the degree
of cooperation among its members [17, 18]. On the one hand, individual-based
features seem not to be relevant in order to determine the degree of cooperation.
On the other hand, in the Ultimatum Game, the proposals and rejection levels
are different depending on the social structure. For example, societies based on
cooperation and sharing of food, show higher offering levels. From the theoretical
point of view, the effect of structured populations in social dilemmas, e.g., the
Prisoner’s Dilemma, public good games, or snowdrift games, has been analyzed
mainly from the perspective of spatially extended populations [14, 15, 22, 27]. In
the simplest case, local interactions are considered in regular lattices where each
individual interacts only within its local neighborhood in contrast to global random
interactions considered in well-mixed populations. However, recent progress in this
area has shown that many social and biological interaction networks are not regular,
as typically used in theoretical models, but display the small-world behavior and
broad degree distributions [1, 2, 13, 23, 28, 33].

The question we address here is precisely how social structure affects the degree
of altruistic behavior. This paper is organized as follows: In Sec. 2 we define the
evolutionary Ultimatum Game model in a complex network. In Sec. 3, following
the tradition of spatial games, we first consider interactions given by a regular
lattice, later extending our analysis to random and small-world networks, which
are characterized by single-scale degree distributions. In Sec. 3.2, we also consider
scale-free networks. Finally we discuss our results and draw the conclusions in Sec. 4.

2. The Model

A set of N agents are arranged in the nodes of a network. We set 1 unit the
amount to be shared in each interaction. Each agent i is characterized by a threshold
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Ti ∈ [0, 1]: as responder, it indicates the minimum amount he will accept; as pro-
poser, it also defines the amount of money he will offer. This situation is usually
named as empathy [30], and has been shown to enhance fairness in some situations
in the Ultimatum Game [25, 26, 31]. Based on experimental evidence reported pre-
viously, we will assume that a fair offer-acceptance (threshold values around 50%)
represents altruistic behavior.

The model runs as follows: at each time step all agents play with all their
neighbors synchronously. Thus for each interaction link between two neighboring
agents (i, j),

(i) If the offer Ti is above the threshold of agent j, Ti > Tj, then the offer Ti is
accepted: agent j increases his payoff by Ti while agent i’s payoff increases by
1−Ti. The payoff obtained by agent i (j) from the interaction with his neighbor
j (i) is Πij = 1 − Ti (Πji = Ti);

(ii) Otherwise if the offer Tj is above the threshold of agent i, Tj > Ti, then the offer
Tj is accepted: agent i’s payoff increases by Tj while agent j’s payoff increases
by 1 − Tj. The payoff obtained by agent i (j) from the interaction with his
neighbor j (i) is Πij = Tj (Πji = 1 − Tj).

The payoff obtained by agent i after interaction with the neighbors j in his
neighborhood V(i) is thus Πi =

∑
j∈V(i) Πij . In the unlikely event that two neigh-

boring agents’ thresholds are the same, one of the offers is selected and accepted
at random. After each round, a selection rule is applied to the system: the agent
with the lowest payoff in the population and his immediate neighbors, determined
by the network, are replaced by new agents with randomly chosen thresholds [5].
We then let the system evolve resetting the payoffs of all agents to zero.

An alternative description of the model could set the interaction between two
agents as a single event in which agent i acts as proposer and j as responder.
However as long as the update is synchronous and every agent plays as proposer
and responder with all his neighbors, this description and the dynamic rules (i)
and (ii) are equivalent.

3. Results

3.1. Single-scale interaction networks

Following previous studies of spatial games [22, 20, 32], we first consider a one-
dimensional lattice where each agent interacts with his two nearest neighbors. We
have run simulations for populations in the range N = 103 to 104 agents, finding
consistent results. The initial thresholds are randomly selected from a uniform
distribution in the range [0, 1]. In Fig. 1 we display the threshold of the agent
with the lowest payoff in the population at each time step. Agents with high and
low thresholds are removed from the population. On the one hand, agents with
high thresholds make large offers that are likely to be accepted by their neighbors,
contributing to the neighbors’ payoff. However quite unlikely they receive large
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Fig. 1. For each time step, a data point indicates the threshold of the agent with the lowest
payoff. The population is composed of 104 agents who interact in a one-dimensional lattice.

enough offers to be accepted due to their high threshold. This behavior can be
illustrated calculating the expected payoff per interaction in a completely mixed
population,

〈Π(T )〉 = T (1 − T ) +
1 − T 2

2
. (1)

In the limiting case of agents with threshold T = 1, they obtain on average a payoff
close to 0. On the other hand, the opposite situation is observed for agents with low
threshold: their offers are hardly accepted while they accept most of the offers they
receive. In the limiting case of agents with threshold T = 0, they obtain on average
a payoff close to 1/2 per neighbor. Thus agents with low thresholds have on average
a larger payoff than agents with high thresholds and are able to survive. Although
the previous argument has been obtained for a completely mixed population, we
observe that it is still valid in the regular case (Fig. 2). Thus, after a transient,
the distribution of thresholds reaches a stationary distribution. Thresholds above
a critical value are removed from the population. For the one-dimensional lattice
considered here, a critical threshold value is obtained Tc = 0.56 ± 0.01. Below this
critical value the distribution of thresholds is not uniform: it increases approaching
the critical value. The payoff distribution also shows a non-uniform distribution:
only values above a critical value Πc = 1.76 are found, displaying a maximum at a
value around Π � 2.

The question we next address is whether the ultimatum model self-organizes
in a critical state. In order to characterize the dynamics, we have measured the
distribution of the distance ∆x between two consecutive selection events, C(∆x),
and the first return time distribution, Pf (t), the time elapsed between two selection
events affecting the same agent. The results are plotted in Fig. 3. In both cases the
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Fig. 2. Distribution of thresholds for 104 agents in a one-dimensional lattice (continuous line)
and in a random network (dashed line) after 4 × 106 iterations. The dynamics selects threshold
values below the critical threshold Tc = 0.56 in the one-dimensional lattice and Tc = 0.88 in the
random network.

Fig. 3. First return time distribution for a system of 104 agents in a one-dimensional lattice.
The solid line is a power-law fit with an exponent α = 1.57. Inset: distribution of the distance ∆x
between two agents getting the lowest payoff consecutively. The solid line is a power-law fit with
an exponent γ = 3.16.

tails of the distributions are well fitted by power-laws. For the spatial correlation

C(∆x) ∼ ∆x−γ , (2)

with γ = 3.16 ± 0.1, and for the first return time

Pf (t) ∼ t−τ , (3)

with τ = 1.57.
These results suggest that the system self-organizes in a critical state where

the distribution of avalanches is also a power-law. The critical state would emerge
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Fig. 4. Avalanche size distribution P (s) of a system of 104 agents in a one-dimensional lattice
(circles) and in small-world networks (squares) with a rewiring probability p = 0.15. The solid
lines are power-law fits with exponents α = 1.0 and α = 1.5, respectively. Inset: the avalanche size
distribution P T (s) considering the thresholds instead of payoffs for the definition of an avalanche
in a one-dimensional lattice. The solid line corresponds to the best exponential fit.

despite the non-uniform distribution of thresholds (and payoffs). An avalanche is
typically defined as follows: it starts when the lowest payoff gets larger than a preset
value Π∗ (close to the critical payoff), and stops when it drops below this value.
The size, s, of an avalanche is the number of time steps it lasts. In Fig. 4, we show
the distribution of avalanche sizes when we use a payoff Π∗ = 1.76 as the indication
of an avalanche. The probability distribution displays a power-law decay

P (s) ∼ s−α, (4)

with an exponent α = 1.0.
It is worth noting that if we had used the threshold value, T , as an indication

of when an avalanche starts and stops, the distribution of avalanches would have
decayed exponentially (see inset of Fig. 4). This behavior reflects that the thresholds
being removed are not always above a critical value (as shown in Fig. 1): agents
with low thresholds are removed often from the population. Thus, the fitness of an
agent is given by its payoff.

Regular lattices are just a crude simplification of social and biological interac-
tions. More realistic models of interaction networks include the small-world behav-
ior: the average distance between agents in the network is similar to the one obtained
in a random network, and the clustering, the fraction of neighbors of an agent that
are also neighbors between them is large, as occurs in a regular lattice. We have
performed simulations in small-world networks generated by rewiring the links of
a one-dimensional lattice, using the algorithm introduced in Ref. 21 in order to
keep all the agents with the same number of links: With a probability p, two edges
exchange their end nodes. The distribution of thresholds and payoff are similar to
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the one-dimensional lattice, as shown in Fig. 2. It can be seen that for the limit-
ing case of a random network, the distribution of thresholds is broader, and has
a higher critical threshold. In this case, the system also self-organizes in a critical
state where the avalanche size distribution displays a power-law scaling. Similarly
to the one-dimensional lattice, the avalanche size distribution (when considering
the threshold as the dynamical variable) is not power-law, but exponential. For the
small-world networks, the distribution of avalanche size is also power-law with an
exponent that depends on the rewiring probability p. For instance, for a system of
104 agents we find an exponent α = 1.5, for a value p = 0.15 (Fig. 4).

3.2. Scale-free interaction networks

In all the results presented so far, the network of interactions is such that the
number of links of each node, its degree, is constant for all the agents. Beyond the
small-world behavior, another important ingredient of interaction networks is that
they often display a scale-free degree distribution. We now turn into the study of
the results of this model when the topology of interactions is not a regular one,
but a scale-free one. As the model for the generation of the network, we used
the Barabási–Albert algorithm [6, 7], generated as follows: starting from a fully
connected network of size m, at time t a node is added, and attached to m existing
nodes, where the probability to be attached to a node is proportional to its degree.
This algorithm generates networks with a power-law degree distribution with an
exponent γ = 3. We have fixed the value m = 2. Once the network is grown, it is
kept fixed and the dynamics is played as indicated by rules (i) and (ii).

In Fig. 5(a) we plot the stationary distribution of payoffs in the population.
There is a well-defined critical payoff, below which the agents are removed. This
critical value is Πc = 1.75 ± 0.02. For large payoffs, the distribution decays as a
power-law with an exponent of 3, reflecting the decay of the degree distribution

0 10 20

Π
0

0.1

0.2

0.3

0.4

0.5

p(
Π

)

0 0.2 0.4 0.6 0.8 1

T

0

0.5

1

1.5

2

p(
T

)

(a) (b)

Fig. 5. (a) Distribution of payoffs and (b) distribution of thresholds for 104 agents in a scale-free
network in the asymptotic state 106 iterations. The distributions are averaged over 100 realizations.
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Fig. 6. The cumulative distribution of avalanches in a scale-free network with 104 (circles) and
2×104 agents. The distribution is well fitted by a power-law with an exponential cutoff. The solid
line corresponds to a power-law fit, leading to an exponent α = 1.62. The preset payoff that defines
when an avalanche starts and ends is Π∗ = 1.77. Averages are obtained over 100 realizations.

of the network. For the distribution of thresholds in the population [Fig. 5(b)],
there is no cutoff in this distribution. All thresholds in the range [0, 1] are present,
with a maximum in the distribution around T � 0.5. The distribution is highly
asymmetric: it approaches zero for thresholds close to 1, while it reaches a finite
fraction in the limit T → 0. Thus, agents with low threshold values have more
chances to survive. This is in agreement with the analytical argument in Eq. (1).
In scale-free networks, the system also exhibits a power-law distribution of the size
of the avalanches (Fig. 6). In this case, the payoff we set to define an avalanche is
Π∗ = 1.77, obtaining an exponent τ = 1.62 for the power-law scaling.

Why do agents with high thresholds survive better in the scale-free network
than in a regular or random network? To address this question we have analyzed
the average degree of the agents grouped according to their thresholds, and the
results are shown in Fig. 7. It can be seen that agents with high threshold values
are more likely to survive if they are located at the hubs of the network. The reason
for this is that they can accumulate payoff via interaction with a large number of
agents.

It is worth noting that when the network is highly heterogeneous, for example
when the degree distribution is scale-free, the dynamics depends on whether the
payoff of each agent is normalized by its degree. For normalized payoffs in the scale-
free networks described previously the critical threshold depends on the number of
agents N . In the limit of large N the critical threshold tends to 1, in contrast to the
system size independent critical threshold reported previously, and the dynamics
displays power-law distribution of avalanches when the threshold used to define an
avalanche is chosen depending on N . A deeper analysis of the normalized payoff
case goes beyond the scope of this paper.
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Fig. 7. Average degree d of agents having a given threshold T when 104 agents interact in a
scale-free network. Averages are obtained over 50 realizations.

4. Discussion and Conclusions

How cooperation and altruism emerge among individuals is a withstanding question
that has attracted much attention in the last years. Also the relevance of the com-
plex social organization, and the concomitant network of interactions in supporting
altruistic behavior is an open question [17, 18].

We have proposed an evolutionary Ultimatum Game with local interactions
that self-organizes in a critical state. To analyze how social structure influences
the degree of cooperation we have considered different topologies for the network
of interactions. Assuming fairness as offer-acceptance around 50%, the amount of
altruistic behaviors in the Ultimatum Game is reflected in the distribution of thresh-
olds in the population. In regular and single-scale networks, high thresholds leading
to low payoffs are removed, while intermediate thresholds are selected in the pop-
ulations. In scale-free networks, the distribution of thresholds displays a maximum
around a value of 50%, decaying for lower and larger threshold values. Comparing
with experimental results in small societies, both settings, the random and scale-free
topologies, capture the experimental findings where offers around 50% are the most
common. However, in the scale-free networks the distribution of thresholds covers
all the range of threshold values decaying slowing from the maximum around 50%,
in contrast to the sharp cutoff obtained in the random case. Thus, a hierarchical
social structure may explain better the patterns of offer-acceptance found in some
societies [13, 18].

From a dynamical point of view, in all the different complex networks we
have analyzed, including regular lattices, small-world, random and scale-free net-
works, the distribution of avalanches displays a power-law scaling with an expo-
nent that depends on network topology. This feature is typically a signature of
self-organized criticality. Many complex systems in nature are found to display this
phenomenon [4, 19]. They characterize long-range correlations in a system, similar
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to the behavior near a critical point in a phase transition. The model introduced
here can be compared with other evolutionary models. The exponents that char-
acterize the dynamics is the same as in the simple model of evolution proposed by
Bak and Sneppen (BS model) [5]. For the one-dimensional lattice, the exponents
characterizing the first return time, spatial correlation and avalanche distribution
for the Ultimatum model introduced here are the same as for the BS model; for
random networks, the exponent of the avalanche size distributions corresponds to
the mean-field exponent of the BS model. However, there is a crucial difference
between the BS model and the one introduced here: while in the BS model the
fitness is directly assigned to the agents randomly from a uniform distribution, in
our model, the fitness is the outcome of the interactions and the distribution of
thresholds is an emerging property of it.

The results presented here complement previous theoretical works on the emer-
gence of cooperation. Among the most used theoretical games to study the emer-
gence of cooperation in social sciences, the Prisoner’s Dilemma is perhaps the most
paradigmatic example. In this model, it has been shown that local interactions
among agents can lead to a cooperative behavior in so-called spatial games [22].
In evolutionary models, it was also found [20] that self-organized criticality can
be present for this system. These results triggered the analysis of spatial games in
different network topologies and strategies of the agents, aiming at uncovering the
conditions under which cooperation can arise [32]. In particular scale-free networks
have been shown to sustain cooperation [20]. Together with our results, hierarchi-
cal social structures, represented for instance by scale-free networks of interaction,
suggest that primitive societies displaying this kind of interaction favored the emer-
gence of altruistic behavior. To elucidate whether the interaction patterns facilitated
altruism, or whether altruistic behavior led to complex interaction patterns, we need
to incorporate more realistic ingredients to the models, for instance the possibility
of removal and establishment of social ties depending on the outcome of the inter-
action [9]. Another open question is the evolution of empathy itself. In this work we
have assumed that empathy has evolved before the thresholds are selected. However
we expect that empathy will co-evolve simultaneously with the thresholds. Other
extensions of the model could consider, for example, several repeated interactions
between agents before selection. In this case, it could be argued that a repeated
interaction scheme could allow for an adaptation of the threshold by the least suc-
cessful agents. The interplay between adaptation and selection is an open question
to be addressed in future works.

In summary, experiments have shown that altruistic behavior is common in
human societies. Furthermore, it has been shown that social structure is a funda-
mental ingredient for understanding the distribution of sharing offers in the Ultima-
tum Game. We show that selection level together with local interactions can lead
to a critical dynamics, where the precise degree of fair offer-acceptance depends on
social structure. Recent developments on complex network has allowed us to con-
sider some simple models capturing basic features of networks of interaction. Our
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work emphasizes the importance of considering the social structure and calls for the
development of more realistic network models of social interaction to understand
the interplay between individual behavior and with whom they interact.
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