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Abstract

Many processes and models produce trees with
depth scaling logarithmically with the num-
ber of leaves. Phylogenetic trees, describing
the evolutionary relationships between biologi-
cal species, are examples of trees for which such
scaling is not observed. With this motivation,
we analyze numerically two branching models
leading to non-logarithmic depth scaling. For
the first one, Ford’s alpha model, power-law scal-
ing in the depth was established analytically.
Our numerical results illustrate that the asymp-
totic regime is approached only at very large
tree sizes. A second model, the activity model, is
introduced here. We show analytically and nu-
merically that its depth also displays power-law
scaling at a critical parameter value.

1 Phylogenetic branching and
models

Although most modern studies on complex net-
works [Albert & Barabási, 2002; Boccaletti
et al., 2006] consider situations in which nodes
are connected by multiple paths, the case of
trees, i.e. graphs without closed cycles, is rele-
vant to describe many natural and artificial sys-
tems. Branching in real trees [Stevens, 1974],
in blood vessels [West et al., 1997], in river
networks [Rodriguez-Iturbe & Rinaldo, 1997] or
in computer file systems [Klemm et al., 2005,
2006] produce complex tree patterns worth to
be described and understood. Trees are the
outcome of classifications algorithms [Jain &
Dubes, 1988] and of branching processes [Har-
ris, 1963] and they also arise when computing

community structure [Guimerà et al., 2003] or
as a backbone (for example a minimum span-
ning tree) for more connected networks [Gar-
laschelli et al., 2003; Hernández-Garcı́a et al.,
2007].

Evolutionary processes leading to speciation
are also summarized in phylogenetic trees
[Cracraft & Donoghue, 2004]. In these trees the
leaves represent living species and each inter-
nal node represents a branching event in which
an ancestral species diversifies into daughter
species. Their topology encodes information
on evolutionary mechanisms which is begin-
ning to be scrutinized [Burlando, 1990, 1993;
Ford, 2006; Blum & François, 2006; Hernández-
Garcı́a et al., 2007; Herrada et al., 2008].

The earliest mathematical model of evolu-
tionary branching was proposed by Yule [1925].
Apart from the distinction he introduced be-
tween genera and species diversification, the
model is equivalent to the Equal Rates Markov
(ERM) model [Harding, 1971; Cavalli-Sforza &
Edwards, 1967]: starting from a single ances-
tral species, one among the tree leaves existing
at the present time is chosen at random, bifur-
cating into two new leaves. Then this operation
is repeated for a number of time steps or, equiv-
alently, until the tree reaches a desired size. The
topological characteristics of the trees so con-
structed are surprisingly robust, being shared
by apparently different models such as the co-
alescent and others [Aldous, 2001]. Essentially
what is needed is that different branches at a
given time branch independently and with the
same probabilities. When extinction is taken
into account, the same topology is recovered
when considering only the lineages surviving at
the final time. One of the characteristics of this
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Figure 1: Mean depth 〈d〉 of trees in TreeBASE
(circles) as a function of number of leaves n.
Squares are obtained from computer simula-
tions of the ERM model, behaving as Eq. (1)
for large n. Depth in the real phylogenetic trees
scales faster than the ERM behavior at large
sizes. For both real phylogenies and model,
depth values for each tree size are obtained by
logarithmic binning of the depth of all trees and
subtrees with that size.

type of branching is a distribution of subtree
sizes A scaling at large sizes as A−2, an outcome
robustly observed in many natural and artificial
systems, and in classification schemes, includ-
ing taxonomies [Caldarelli et al., 2004; Capocci
et al., 2008]. Another important characteristic
is that the mean depth of the tree 〈d〉 (i.e. the
average distance, measured in number of links,
from leaves to the root) scales logarithmically
with the number of leaves:

〈d〉 ∼ log n . (1)

It is worth to note that these results apply not
only to many random branching models, but also
to the simple deterministic Cayley tree, in which
all internal nodes at a given level split in a fixed
number of daughter nodes.

In view of this generality it was surprising
to find that the topology of observed phyloge-
nies does not agree with any of these predictions
[Herrada et al., 2008]. In fact, it was known
since some time ago that real phylogenies are
substantially more unbalanced than predicted
by the ERM and similar models [Aldous, 2001;
Blum & François, 2006]. This means that some
lineages diversify much more than others, in a
way that is statistically incompatible with the
ERM predictions. Figure 1 compares data [Her-
rada et al., 2008] compiled from TreeBASE, a

public repository containing several thousands
of empirical phylogenetic trees corresponding to
virtually all kinds of organisms in Earth, with
the predictions of the ERM model. For the phy-
logenetic trees at large sizes the mean depth
scales with the number of leaves fastest than the
ERM behavior in Eq. (1).

The breakdown of the ERM behavior indicates
that evolutionary branching should present cor-
relations either in time or between the differ-
ent branches. Mechanisms producing trees with
non-ERM scaling for the depth have been iden-
tified, as for example the situation of critical
branching [De Los Rios, 2001; Harris, 1963]
or optimization of transport processes [Banavar
et al., 1999]. In the phylogenetic context models
of this type have been proposed [Aldous, 2001;
Pinelis, 2003; Blum & François, 2006; Ford,
2006], although most of them lack a clear inter-
pretation in biological terms.

In the following we present results for two
branching models showing asymptotically non-
ERM, i.e. non-logarithmic, scaling for the depth.
Their study is motivated by the empirical re-
sults above from real phylogenetic trees, but we
do not expect them to be good models for evo-
lutionary process. Rather we study them be-
cause they pertain to the small set of available
models with non-ERM scaling which are defined
dynamically (i.e. by a set of rules that are ap-
plied to the present state of a growing tree to
find the state at the next time step) rather than
being characterized globally by statistical or op-
timization prescriptions. The first model we
present, Ford’s alpha model, is a simple example
for which the non-trivial asymptotic scaling (of
the power law type) has been analytically iden-
tified. We analyze it numerically to confirm this
prediction and to display the behavior at finite
sizes. We introduce later a new model, the ac-
tivity model, which also leads to non-logarithmic
depth scaling at a critical parameter value.

2 Ford’s alpha model

Ford [2006] introduced a model for recursive
tree formation: At a given step in the process
the tree is a set of leaves connected by terminal
links to internal nodes, which are themselves
connected by internal edges until reaching the
root (the root itself is considered to have a sin-
gle edge joining to the first bifurcating internal
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Figure 2: Depth statistics vs tree size for the alpha model. Symbols indicate the mean depth of leaves
from root, averaged over the 100 trees generated for each size (2k, k = 3, 4, ..., 15), and the error bars
are the corresponding standard deviations. The points in the rugged lines come from each subtree
of all trees generated. The dashed segments indicate the analytic predictions [Ford, 2006] for the
scaling at large n. The inset highlights the logarithmic scaling of the α = 0 case.

node; with this convention a tree of n leaves has
n − 1 internal edges). Then, a probability of
branching proportional to 1 − α is assigned to
each leaf, and proportional to α to each inter-
nal edge. By normalization these probabilities
are, respectively, (1− α)/(n− α), and α/(n− α).
When a leaf is selected for branching, it gives
birth to a couple of new ones, as in the ERM
model. But when choosing an internal edge, a
new leaf branches from it by the insertion in
the edge of a new internal node. For α = 0 we
have the standard ERM model. For α = 1 the
completely unbalanced comb tree, in which all
leaves branch successively from a main branch,
is generated. Intermediate topologies are ob-
tained for α ∈ (0, 1).

By considering the effect of the addition of
new leaves on the distances between root and
other nodes, Ford [2006] derived exact recur-
rence relationships which, when written in
terms of the average depth, lead to:

〈d〉n+1 =
n

n− α
〈d〉n +

2n(1− 2α)
(n + 1)(n− α)

. (2)

〈d〉n is the mean depth of the leaves of a tree

with n leaves. By assuming a behavior 〈d〉n ∼ nν

at large n, and expanding Eq. (2) in powers of
1/n, we get ν = α, so that

〈d〉n ∼ nα , if 0 < α ≤ 1 . (3)

If α = 0 the standard ERM behavior, Eq. (1), is
recovered.

Figure 2 shows numerical results for the
depth of trees generated with this model. Note
that the predicted asymptotic behavior is at-
tained, but only at very large tree sizes, in gen-
eral much larger than available empirical phy-
logenies. As analytically demonstrated [Ford,
2006] depth statistics of subtrees of given size
extracted from a large tree behave as data from
trees of that size directly generated by the alpha
model algorithm.

While the Ford model gives a simple mecha-
nism for scaling in trees with a tunable expo-
nent, the dynamical rule of posterior insertion
of inner nodes is hard to justify in the context of
evolution (although one can think on the mod-
elling of errors arising in phylogenetic recon-
struction methods when incorrectly assigning
a splitting to a non-existing ancestral species).
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This motivates the introduction of a new model
described in the next section.

3 Activity model

In this section we show that tree shapes distinct
from the ERM model may also result from a
memory in terms of internal states of the nodes.
The activity model proposed here is conceptu-
ally similar to the class of models suggested
by Pinelis [2003]. However, the present model
distinguishes only between active and inactive
nodes and has a single parameter controlling
the spread of activity.

Starting from a single disconnected node (the
root), a binary tree is generated as follows. At
each step, a leaf i of the tree is chosen and
branched into two new leaves. Each of the two
new leaves, independently of the other, is set ac-
tive with probability p or inactive with proba-
bility 1 − p. The branching leaf i is chosen at
random from the set of active leaves if this set
is non-empty. Otherwise, i is chosen at random
from the set of all leaves. Figure 3 shows that
for p = 1/2 the model generates trees with mean
depth growing as the square root of tree size. For
values of p below or above 1/2, 〈d〉 seems to in-
crease logarithmically with n.

Here we give a simplified argument to under-
stand the observed exponent 1/2 of the distance
scaling with system size in the case p = 1/2. At
the time the growing tree has n leaves in total,
let Da(n) be the expected sum of distances of ac-
tive leaves from the root, and Db(n) the anal-
ogous quantity for the inactive leaves. When a
randomly chosen active leaf –at distance da from
root– branches, the expected increase of Da(n) is

∆Da(n) =
p2(da + 2) + 2p(1− p) · 1 + (1− p)2(−da)

= (2p− 1)da + 2p . (4)

Here the three terms of the first sum are for
the activation of two, one and zero of the new
leaves. This expression is appropriate as far as
the number of active nodes is not zero. Simul-
taneously, the expected change in Db(n) during
the same event is

∆Db(n) =
p2 · 0 + 2p(1− p)(da + 1) + (1− p)22(da + 1)

= 2(1− p)(da + 1) . (5)

Averaging over the different active nodes which
can be chosen amounts to replacing da in the
above formulae by 〈da〉n, the average depth of
the active leaves in a tree of n leaves. Writ-
ing Di(n + 1) = Di(n) + ∆Di(n), for i = a, b,
one would get a closed system for the quanti-
ties Di(n) provided 〈da〉n is expressed in terms
of them. This can be done by writing 〈da〉n =
Da(n)/a(n), where a(n) is the expected number
of active leaves in a tree of n leaves. This ex-
pected value is used here as an approximation
to the actual number of active leaves.

The recurrence equations for Di(n) are spe-
cially simple in the most interesting case p =
1/2, since the dependence in 〈da〉n disappears
from one of the equations:

Da(n + 1) = Da(n) + 1 (6)
Db(n + 1) = Db(n) + 〈da〉n + 1 . (7)

The solution (with initial condition Da(1) = 0) of
Eq. (6) is simply:

Da(n) = n− 1 . (8)

Since the probabilities of an increment or decre-
ment (by one unit) of the number of active leaves
are the same and time-independent for p = 1/2,
the number of active nodes performs a symmet-
ric random walk with a reflecting boundary at
0 (this last condition arises from the prescrip-
tion of setting active one node when the number
of active nodes has reached zero in the previous
step). For such random walk the expected value
of active leaves a(n) increases as the square root
of the number of steps. Since a new leaf is added
at each time step, this leads to:

a(n) ∼ n1/2 . (9)

Combining (8) and (9) we obtain the average
distance of active nodes from root at large tree
sizes:

〈da〉n ≈
Da(n)
a(n)

∼ n1/2 . (10)

Now we can plug this result into Eq. (7),
which can be solved recursively:

Db(n) = Db(1) +
n−1∑

t=1

(〈da〉t + 1) ∼
n−1∑

t=1

t1/2 ∼ n3/2 .

(11)
The totally averaged depth 〈d〉n, which counts
both the active and the inactive leaves, is

〈d〉n =
Da(n) + Db(n)

n
∼ n1/2 + n3/2

n
∼ n1/2 ,

(12)
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Figure 3: Depth versus size for the activity model for various values of the activation probability p.
Data points displayed by symbols give the average distance of leaves with respect to the root. Error
bars give the standard deviation taken over different realizations (1000 trees per data point). Data
in the rugged curves are for all subtrees of trees with size 221 = 2097152. The dashed line has slope
1/2, corresponding to the scaling of the p = 0.5 curve, as discussed in the text.

which explains the asymptotic behavior ob-
served in Fig. 3 for p = 1/2.

We note that the growth dynamics presented
here may be mapped to a branching process
[Harris, 1963], with the difference that here the
death (inactivation) of a node does not lead to its
removal from the tree. The special case p = 1/2
corresponds to a critical branching process.

4 Discussion

We have presented and studied two simple mod-
els which lead to non-logarithmic scaling of
the tree depth. In contrast with many of the
available models having this behavior [Banavar
et al., 1999; Aldous, 2001; Blum & François,
2006; Ford, 2006] they are formulated as dy-
namical models involving growing trees, so that
rules are given to obtain the tree at the next
time step from the present state. Their study
has been motivated by data from phylogenetic
branching, and they are interesting additions
to our present understanding of complex net-
works and trees, but they can not be consid-
ered realistic representations of evolutionary

processes. The branching of internal edges in
the Ford model has no obvious biological inter-
pretation. The activity model puts the mech-
anisms of birth-death critical branching [Har-
ris, 1963] within a framework of transitions be-
tween node internal states similar in spirit to
the approach of Pinelis [2003]. The need to tune
a parameter to attain the non-ERM critical be-
havior is however a limitation for its applicabil-
ity. Much additional work is needed to identify
the proper biological mechanisms behind evo-
lutionary branching and adequate modelling of
them.

A recent analysis of several evolutionary mod-
els including species competition [Stich & Man-
rubia, 2008] indicates that in these models cor-
relations are finally destroyed by mutation pro-
cesses and persist only for a finite correlation
time. Thus sufficiently large trees would have
a scaling behavior closer to the asymptotic ERM
predictions. Since the largest phylogenies in
databases such as TreeBASE have only some
hundreds of leaves, it is possible that the ob-
served imbalance and depth scaling is a finite-
size regime. Nevertheless models going beyond
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the ERM scaling are needed at least to explain
this finite-size regime, and also to elucidate the
true asymptotic scaling behavior. Here, we have
also observed large finite-size transients in the
alpha model of Sect. 2.

We finally note that since 〈d〉 is a measure of
the diameter of the tree, and that for a tree the
number of nodes is simply twice the number of
leaves, power law scaling of the type 〈d〉 ∼ nν

indicates that the tree can be thought as hav-
ing a (fractal) dimension d = 1/ν [Eguı́luz et al.,
2003]. The logarithmic scaling in the ERM
model is an example of the small-world behavior
common to many network structures [Albert &
Barabási, 2002], indicating an effective infinite
dimensionality, whereas the power law scaling
reveals a finite dimension for the tree. The al-
pha model produces trees with tunable dimen-
sion from 1 to ∞, and the critical activity model
gives two-dimensional trees.
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