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D2.2. Report on correlation methods

Network reconstruction based on correlations and
distances

Summary

In this report we review recent advances in the analysis of fully connected networks
with weighted links. The weight of a link can represent the similarity between a pair of
nodes, e.g., a correlation, or their dissimilarity, e.g., a distance. While for the former
several approaches have been developed to uncover the underlying topology, for the
latter there isn’t a standard procedure so far. An approach consists in mapping the
weights of the links to a probability in the range [0,1]. Generalized measures defined in
terms of the probabilities can then be applied. An alternative approach introduces a
threshold allowing converting the weighted networks into directed networks with

binary-valued adjacency matrices.



1. Introduction

The theory of complex networks, developed in the last decade, has proposed a set of
techniques to analyse the topology of networks. A network is, in general, a
representation of a system whose nodes are the elements of the system and the links
represent interaction between pair of nodes. According to the properties of the nodes
and links one can face different classes of networks. For example if there are two kinds
of nodes, e.g. authors and papers, the network is bipartite; the links can be undirected,
directed or weighted. Although there is a large literature dealing with undirected, and
also directed, networks, the treatment of weighted networks is not so well developed.
For unweighted complex networks, with binary adjacency matrices (i.e. matrices with
elements taking one of two possible values, say 0 and 1, indicating the absence or
presence or link), a set of local and global measures on the network has been defined,
including the degree of a node, its average nearest-neighbor degree [Pastor-Satorras
et al, 2001] and its clustering coefficient [Watts, Strogatz, 1998; Albert, Barabasi 2002].
Defining these measures for weighted networks is more difficult and in some cases
several unequivalent definitions have been given for the same concept. For instance a
review of definitions of weighted clustering coefficients can be found in Ref. [Saramaki

et al, 2007].

In the EDEN project we typically deal with fully-connected weighted networks, that is,
for each pair of nodes there is a value which gives the similarity or dissimilarity
between them. The question arises on how to extract relevant information from a
network perspective. We can distinguish two cases: whether the weight reflects a
similarity, i.e. larger values represent more similar, or dissimilarity, where a larger
value indicates less similarity. An example of the first type of network is obtained when
the weight is given by a correlation; in the remainder we will refer to these as similarity
networks. Dissimilarity networks are obtained when the entries in the adjacency matrix

measures distances between nodes; we will refer them as distance networks.



2. Similarity networks
Similarity networks can be obtained from time series. Some examples include:
e financial time series: where each node represents an asset, and the weight
between two pair of assets is given by the time correlation of the asset price;
e brain activity: where the nodes represent an appropriate volume of the brain
(being a neuron, a voxel or a brain area) and the weight between nodes is given

by the time correlation of their activity recorded by different techniquess;

If x;(t) is the time evolution of the variable recorded at node i, the time correlation

between nodes / and j is given by
_ (xixj) - (xi><xj>

Cl] - )
/(xiz)(x,-z)

where () denotes temporal averages.

The magnitude d;; = [2(1 — C;;) is a metric distance if C; is a time correlation.

Once a distance is introduced the typical analysis one can perform includes:

a) Minimum spanning tree: trees and graphs [see Fig. 1 for asset trees and
graphs];

b) Spectral analysis, eigenvectors [see Fig.1].

Alternative methods aiming at generalizing measures defined in unweighted networks

have been proposed and are introduced in Sections 3 and 4.

In the remainder we will consider weighted, fully connected networks. This means that
for any pair of nodes (i, j) there is a weight wj; obtained by a specified means. The
matrix W is defined by the elements {wij}, where i = {1, ..., N} being N the number of
nodes. In this report we will describe two approaches. The first one maps the
adjacency matrix into a probability matrix P where the elements [pij} are obtained in a

convenient way from the matrix W. The second approach converts the original



network into a directed unweighted network where each link is present or not

depending on whether w;; > R for a pre-specified threshold R.

3. Mapping weighted, fully connected networks to ensemble probability networks

Similarity and distance matrices have been generated for example from time series, so
that closely related series (i.e. with fluctuations highly correlated in time) have a large
correlation coefficient among them. The first step is to find a continuous bijective map
M : R - [0,1] from the real numbers to the interval between 0 and 1, which maps the
weights w;; € R to a quantity p;; € R. A simple example of such a map is a linear
normalization of the weights:

Wij — mm(wl})

Pij = max(wij) - min(wij) '

This simple normalization maps min(w;) to zero. While this is often acceptable in the
case of a correlation matrix, one should make a more sophisticated choice of map if
there are many edges with weight min(wj). Similarly, if the network has negative
weights as well as positive ones, the normalized modulus of the original weights might
be a more appropriate choice. For the case in which the weights represent a distance
instead of a correlation, analogous transformation can be easily defined. A more

detailed discussion on the topic of map choice can be found in [Ahnert et al 2007].

The idea is to interpret the matrix P with entries {pij} as a matrix of probabilities, an
ensemble of edges or ensemble network. Thus, just as any binary square matrix can be
understood as an unweighted network and any real square matrix corresponds to a
weighted network, any square matrix with entries between 0 and 1 corresponds to an
ensemble network. If we sample each edge of the ensemble network exactly once, we
obtain an unweighted network which we term a realization of the ensemble network.
In particular, p; is the probability that the edge between nodes i and j exists. These
concepts are valid both for directed networks, with any p; € [0, 1], and undirected
networks, for which p; = pj;, so that the matrix is symmetric. In a real-world weighted

network, the original weights can represent almost any physical quantity, such as the
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strength of collaboration between two scientists, the number of passengers traveling
between two countries, or genetic distance. By mapping these weights to probabilities
we rid ourselves of the interpretational burden of these weights, whilst retaining all
the topological information they contain. It should be noted that in many cases the
interpretation of weights as probabilities also makes intuitive physical sense.
Whenever the weights in a network represent a magnitude of flow, this can be
interpreted directly in terms of the probability that a transfer occurs during a given
unit of time. Examples include traffic and transport networks as well as communication
networks, where we have units (passengers, money, signals) which form an edge,
through their transfer, with a probability proportional to the flow rate. We hope that
the same ideas would apply also to networks representing gene flow, one of the

targets of EDEN.

All measures on unweighted networks can be written as functions of the entries a; of
an adjacency matrix A. In fact, generally they can be written as a polynomial of these
entries, or a simple ratio of such polynomials. Note that, for an unweighted network,
a; = (a;)" for all positive integers m > 0, so that these polynomials are of first order
only. Consider a general first-order polynomial, which can be written fully expanded

as:

fla) = %c ]_[ ap &

where N is the number of nodes, the C, are real coefficients and the b(g); are a set of

Boolean matrices specifying which adjacency matrix entries appear in each term of the

b(q)jk

jk=0 g =1 in a given realization A is simply

polynomial. The probability P, that [T

P(q) =1I; NP (Q)’k . Thus, due to the linearity of the polynomial, the average f(P) of f

over the ensemble network realizations is:

fp) = ZZ ¢ 1_[ W=re) . @

This means that the value of a polynomial function f of the entries of an unweighted
network A, averaged over the realizations of a given ensemble network P is equal to

the value of the polynomial of the ensemble network adjacency matrix itself.



Average degree. The degree k; of a given node i in an unweighted network with
adjacency matrix elements ag; is the number of its neighbors, and is written ask; =
2ja;;. In a weighted network with elements w; the corresponding quantity has been
termed the strength of the node i, denoted as s;, which consists of the sum of the
weights: s; = ¥ ; w;;. In an ensemble network, the corresponding sum over the edges
attached to a particular node gives the average degree of node i across realizations,

denoted as k, and given by k, = ¥, p;;.

It is important to note that while the strength of a node in a weighted network may
have meaning in the context of the network, k, has a universal meaning, regardless of

the original meaning of the weights.

Clustering coefficient. The clustering coefficient of a node i, which has been defined
[Watts, Strogatz 1998] as:

.- Dk Aij Ak Qs Djk Aij Uikl
' k(k —1) 2k QijAik

where k # j # i # k in the sums. This corresponds to the number of triangles in the

(3)

network which include node i, divided by the number of pairs of bonds including i,
which represent potential triangles. Using the ensemble approach with its normalized
weights this generalizes straightforwardly to:

c¢ = Zj,k DijPjkPki , 4)
Zj,k DijDik

which can be read as the average number of triangles divided by the average number
of bond pairs. In modified form, this clustering coefficient has appeared in the very
recent literature [Zhang, Horvath, 2005] but without connection to a general approach
to the construction of weighted network measures based on a general mapping from
weights to probabilities. Note that ¢/ is not the average of ¢; over the ensemble. For a

detailed discussion of this subtlety, see [Ahnert et al, 2007].

All measures constructed with the ensemble approach are only functions of the

normalized weights p;;, not of the elements of an unweighted adjacency matrix a; or of



the degree k. This distinguishes the ensemble measures from measures proposed for

weighted networks in the literature, such as the weighted clustering coefficient ¢}":

1 (w-- + w-k)
c» Z Y 2 L aijaikajk , (5)
j.k

E T k(k—1)/2

and the weighted average nearest-neighbor degree k", ;:

N

w 1
ki = E aiwijk; . (6)
l

j=1

Both are defined in Ref. [Barrat et al, 2004], and eq. (5) is the most frequently cited
definition of a weighted clustering coefficient in the literature. Due to their

construction, these measures cannot be used for the analysis of fully connected

w

nni = 1 and ¢} =1 for all nodes i in such networks. Fully

weighted networks, as k
connected weighted networks form an important class of complex networks, for
example in the form of the (virtually fully-connected) EU air travel network [Ahnert et
al, 2007], functional brain networks [Eguiluz et al, 2005], genetic networks [Rozenfeld
et al 2007]. Furthermore, any matrix of similarities or distances between a number of
objects can be treated as a fully connected weighted network, and thus can be
analyzed using the ensemble approach, but not with approaches such as eq. (5) and

(6), which are “mixed” in the sense that they make use of both the unweighted and

weighted adjacency matrix entries.

Note that the absolute values of the ensemble clustering coefficient have limited
meaning, as they are dependent on the map M. It is their relative values which carry
the information, and these are largely independent of the choice of map M, as long as

it is bijective.

4. Thresholding

A complementary approach when dealing with a large number of nodes consist in
thresholding the weights: for a given threshold value R a network, its adjacency matrix,

can be constructed such that if the weight is larger than the threshold then a link



connecting the pair of nodes is present otherwise the link is absent. This idea can be
applied both to similarity and to distance networks (Figure 2). Following this approach
a weighted network can be transformed in a set of unweighted networks. This
approach has been followed to analyze brain functional networks [Eguiluz et al, 2005].
From time series of brain activity obtained using fMRI, undirected networks have been
obtained describing brain functional networks for healthy humans performing simple
cognitive tasks. The topological analysis includes scale-free degree distributions, small-
world property (small path length and large clustering), and degree-degree

correlations [Figure 3].

The question is now which is the convenient threshold to be considered, as the
properties of the network change depending on the threshold value R: for small values
of R, the reconstructed network is fully connected, while if the value of R is large
enough, the network is composed by isolated nodes. For intermediate values it has
been found that the network can display a percolation transition where the network
displays a large connected component. Percolation properties have been analyzed in
some detail in cell-phone networks [Onnela et al 2007] finding that the properties of
the network depend on whether the percolation is analyses removing the strongest

link or the weakest links (Figure 4).
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Figure 1. Asset graph for the NYSE. Clusters corresponding to the eigenvectors of the
correlation matrix, identified by the clique percolation method, are denoted by the
shaded background. Reproduced from Ref. [Heimo et al, 2007]

Figure 2. Methodology used to extract functional networks from the signals. The
correlation matrix is calculated and then used to define the network among the
highest correlated nodes. Top four images represent snapshots of activity and the
three traces correspond to selected voxels from visual (V1), motor (M1) and posterio-
parietal (PP) cortices. Reproduced from Ref. [Eguiluz et al 2005]

Figure 3. Degree distribution for three values of the correlation threshold. The inset
depicts the degree distribution for an equivalent randomly connected network.
Reproduced from Ref. [Eguiluz et al 2005]

Figure 4. The stability of the mobile communication network to link removal. The
control parameter f denotes the fraction of removed links. (A and C) These graphs
correspond to the case in which the links are removed on the basis of their strengths
(w; removal). (B and D) These graphs correspond to the case in which the links were
removed on the basis of their overlap (O; removal). The black curves correspond to
removing first the high-strength (or high Oj) links, moving toward the weaker ones,
whereas the red curves represent the opposite, starting with the low-strength (or low
Oj) ties and moving toward the stronger ones. (A and B) The relative size of the largest
component Rec(f) = Neoclf)/Nec(f=0) indicates that the removal of the low w;j; or Oj; links
leads to a breakdown of the network, whereas the removal of the high wj or Oj links
leads only to the network’s gradual shrinkage. (A Inset) Shown is the blowup of the
high wj; region, indicating that when the low wj; ties are removed first, the red curve
goes to zero at a finite f value. (C and D) According to percolation theory, S =
Y s<sng, NsS2/N diverges for N - oo as we approach the critical threshold f., where the
network falls apart. If we start link removal from links with low w;; (C) or O; (D) values,
we observe a clear signature of divergence. In contrast, if we start with high w;; (C) or
O (D) links, there the divergence is absent. Finite size scaling shows that the small
local maximum seen in D at f = 0.95 does not correspond to a real phase transition.
Reproduced from Ref. [Onnela et al, 2007]
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Basic
Materials

Figure 1
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