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Allometric Scaling in Phylogenetic Trees 

 

Summary 

 Understanding the patterns and processes of diversification of life in the planet is a key 

challenge of science. The Tree of Life represents such diversification processes through the 

evolutionary relationships among the different taxa, and can be extended down to intra-specific 

relationships.  

 The purpose of this deliverable was to examine, with network methods, the topological 

properties of a large set of interspecific and intraspecific phylogenies to elucidate what are the 

branching patterns appearing on them. We find that these branching patterns follow allometric 

rules conserved across the different levels in the Tree of Life, all significantly departing from 

those expected from the standard null models. The finding of non-random universal patterns of 

phylogenetic differentiation suggests that similar evolutionary forces drive diversification 

across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, 

shaping the diversity of life on the planet.  

 

The following scientists have contributed to this deliverable: E. Alejandro Herrada, Claudio J. 

Tessone, Víctor M. Eguíluz, Emilio Hernández-García, Carlos M. Duarte (IMEDEA-UIB), and 

Konstantin Klemm (Bioinf Leipzig) 
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Introduction 

The Tree of Life is a synoptic depiction of the pathways of evolutionary differentiation between 

Earth life forms [1], and contains valuable clues on the key issue of understanding the diversification 

of life in the planet [2]. The branching pattern of the Tree of Life, which is being captured at 

increasing resolution by the advent of molecular tools [3], can be examined to investigate 

fundamental questions, such as whether it follows universal rules, and at what extent random 

differentiation mechanisms explain the shape of phylogenetic trees. The examination of the structure 

of the Tree of Life can also help to infer whether evolution acts at intraspecific scales in a way 

different from the action of evolution at the interspecific scale. Here we address these fundamental 

questions on the basis of a comprehensive comparative analysis of phylogenetic trees representing 

different fractions and domains of the Tree of Life, from interspecific to intraspecific scales. We 

draw from previous analyses of the geometry of the Tree of Life [4], the characterization of other 

branching systems [5,6], and using tools derived from modern network theory [7-10] to examine the 

scaling of the branching in the Tree of Life [11,12]. Our analysis is based on a thorough data set of 

more than 5000 interspecific phylogenies and a sample of 67 intraspecific phylogenies (see also 

Appendix), thereby testing the universality of the results derived across scales.  

A phylogenetic tree is a set of nodes, each node representing a diversification event, connected by 

branches (links). For each node i, a subtree Si is made up of a root at node i and all the descendant 

nodes stemming from this root. The subtree size Ai gives the number of subtaxa that diversify from 

node i (including itself). Beyond this measure of the diversity degree, the characterization of how the 

diversity is arranged through the phylogenies can be achieved through the cumulative branch size, Ci, 

a measure of the subtree shape. It is defined [13] as the sum of the branch sizes associated to all the 

nodes in the subtree Si, Ci = ∑Aj. For the same tree size, and restricting to binary branching events, 
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the smallest value of the cumulative branch size is obtained for a completely symmetric, balanced 

tree, whereas the most asymmetric, the pectinate or comb-like tree in which all branches split 

successively from a single one, yields the largest Ci value [13]. To be clearer, we show in Figure 1 

the analysis of Ai and Ci for a completely balanced tree (Figure 1a) and for a completely imbalanced 

tree (Figure 1b). A portion of a real phylogenetic tree is also shown (Figure 1c). How the shape of the 

tree (i.e., the distribution of the biological diversification) does change with tree size (i.e., with the 

number of taxa it contains) is given by the scaling of the subtree shape C vs. the subtree size A, as 

described by the allometric scaling relation C ∼ Aη. We quantitatively characterize the shape of each 

tree in our data set by calculating the functions F(A) and F(C), which are the complementary 

cumulative distribution functions (CCDF) of Ai and Ci values in the tree, respectively, and the value 

of the allometric scaling exponent, η. We compare the results derived from the analyses of inter- and 

intra-specific phylogenetic trees among them, to test for the preservation of branching patterns across 

evolutionary scales, and against those derived from the analyses of randomly-generated trees to test 

whether the allometric scaling derived can be modeled using simple, random branching rules. 

 

Results 

The branch-size CCDF displays power-law tails of the form AτF(A)~ A −1  for large branch size A 

(Figure 2a). The power-law exponents τA are remarkably similar for the data sets analyzed: τA = 1.76 

± 0.03, and 1.74 ± 0.02 for intra- and interspecific phylogenies, respectively. Similarly, the 

cumulative-branch-size CCDF also displays a power-law tail of the form CτF(C)~ C −1  at large C, 

with a similar agreement between the exponents of the intra- and interspecific data sets: τC = 1.53 

±0.02 and 1.53 ±0.02, respectively (Figure 2b). The discrepancy observed between the two data sets 

at the tail of the distributions can be explained by the different sizes of the typical trees on them: each 
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tree contributes a natural cutoff to the overall distribution, and since the intraspecific trees are smaller 

in average, their cutoff appears at smaller tree sizes.  

The allometric exponent, η, that characterizes the scaling of tree shape with tree size (Figure 3a), is 

also remarkably similar for the intraspecific (η = 1.43 ±0.01) and the interspecific (η = 1.44 ±0.01) 

phylogenies. This constancy of the exponents is still more remarkable when realizing (inset of Figure 

3a) that it does not only apply to average properties of sets of intraspecific and interspecific trees, but 

also to individual phylogenies of groups of organisms pertaining to different kingdoms and living 

across widely contrasting environments, as it is reflected by the very narrow range of η obtained 

from different phylogenies (〈η〉 = 1.47, σ = 0.03, Figure 3a). The scaling exponents for our large 

interspecific data set are also matched almost perfectly (Figure S1) by those derived from a set of 67 

interspecific phylogenies randomly drawn from the published literature (see Appendix) thereby 

validating the uniformity of the scaling rules of the broad interspecific phylogenies and the smaller 

set of intraspecific ones used here. The later was also derived from a similar random sample taken 

from the published literature (see Appendix).  

The allometric scaling of C ∼ A1.44 derived from our analysis falls somehow in between those 

obtained by simulated phylogenies derived from two extreme topologies: The symmetric tree gives 

C ∼ A ln A, which corresponds to η = 1 with a logarithmic correction, while the pectinate tree has η = 

2. The natural null model for tree construction, the Equal-Rates Markov (ERM) model [14, 15], 

yields a scaling C ∼ A ln A similar to the symmetric tree with η = 1 but different from the scaling 

displayed by empirical inter- and intraspecific phylogenies, particularly for large ones (Figure 3b). 

Therefore some topological aspects of phylogenetic trees are not adequately reproduced by the ERM 

model. Our results imply that successful lineages diversify more profusely than expected under 

random branching, generating the large imbalances that characterize emerging depictions of the Tree 

of Life [4]. Alternative models introducing correlations, such as the proportional-to-distinguishable-
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arrangements (PDA) model [4, 16] or the beta splitting model [17], could generate more realistic 

phylogenies. Guided by previous biological allometric scaling analysis, we have assumed a power-

law scaling of the form C ~ Aη. However, other ansatz could also fit the data. The important point, 

however, is that these modeling approaches should give similar scaling properties for intra- as for 

interspecific branching.  

 

Discussion 

Traditionally, microevolutionary and macroevolutionary processes have been studied independently 

by population geneticists and evolutionary biologists, respectively [18]. The divide between these 

two levels of generation of biological diversity is an old one, rooted in the controversy between 

Darwinian gradualism and the saltationism proposed by others, prominently paleontologists, to 

explain macroevolutionary processes [19]. The debate as to whether macroevolution is more than the 

accumulation of microevolutionary events remains active [18, 20, 21], although refined 

paleontological evidence supports the continuum between micro- and macroevolution for some 

lineages [22]. The results presented here show that the branching and scaling patterns in intraspecific 

and interspecific phylogenies do not differ significantly for the topological properties we have 

calculated. Thus, shall saltation processes be a factor at the macroevolutive level, this is not reflected 

in the topology of phylogenetic branching as examined here. Evidence for possible differences in 

phylogenetic topologies between the inter- and intraspecific levels may require a detailed analysis of 

branching times, which we have not attempted.  

Processes leading to scaling laws in size distributions in natural systems have been formulated as 

growth models [23, 24]. Many of the findings carry over to scaling properties found in networks [25] 

and their description in terms of branching processes [26]. But most of these models predict 

branching topologies similar to the ERM model. An alternative approach to understand the observed 
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exponent would be to trace analogies with scaling laws in different branching systems [5,6,27] which 

have been explained by invoking a natural optimization criterion based in the fact that the observed 

trees contain the largest possible number of apices within the smallest number of branching levels. 

For binary trees of size A, where nodes are restricted to occupy uniformly a D dimensional Euclidean 

space, the minimum value of C scales as Aη, with η = (D +1)/D. This scaling also describes the D-

dimensional tree with the maximum size for a given depth (the average distance between root and 

leaves). The value of η obtained in our phylogeny analysis, η ≅ 1.44, is achieved only for optimal 

trees restricted to spaces of D ≅ 2.27 dimensions. Given the apparently unlimited number of variables 

that may yield differences among taxa, restricting their representation to a space with such a small 

number of dimensions seems unreasonable. This interpretation suggests that the evolutionary process 

yielding the observed phylogenies is not the most parsimonious one, which could potentially yield a 

similar biodiversity with fewer branching levels. In fact, the natural choice D = ∞ gives an optimal 

exponent η = 1, which correspond to the ERM value and departs from observed scaling. Optimal 

traffic networks [28] also led to the exponent τA = 2 which departs from the empirical scaling 

exponent reported here for phylogenetic trees.  

In summary, the remarkably similar allometric exponents reported here to characterize universally 

the scaling properties of intra- and inter-specific phylogenies across kingdoms, reproductive systems 

and environments, strongly suggests the conservation of branching rules, and hence of the 

evolutionary processes that drive biological diversification, across the entire history of life. Although 

at short branch sizes the topology of observed phylogenies cannot differ much from that expected 

under random and symmetric trees, due to the restriction of binary bifurcations in phylogenetic tree 

reconstruction, significant departures become universally evident as trees become larger, where the 

null ERM model and real phylogenies differ (Figure 2b). These deviations suggest (a) that the 

evolution of life leads to less biodiversity than an optimal tree can possibly generate; and (b) the 
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operation of a mechanism generating a correlated branching, where some memory of past 

evolutionary events is maintained along each branch. This correlated branching pattern implies that 

entities that diversify faster than average lead to new biological forms that diversify more than 

average themselves. Invariance across the broad scales considered here indicates that relatively 

simple rules govern the phylogenetic branching and the unfolding of biodiversity. Their deviation 

from random models indicates that evolutionary success is a correlated trait within lineages, yielding 

present asymmetries in the structure of the Tree of Life.  

 

Material and Methods. 

Phylogenies databases. 

On June 30th 2007 we downloaded the 5,212 phylogenetic trees available at that time in the database 

TreeBASE (http://www.treebase.org). TreeBASE constitutes a large database of 

interspecific phylogenies, which were collected from previously published research papers. The size 

of trees oscillates from 10 to 600 tips. Most of the bifurcations in these trees are binary, as confirmed 

by the fact that the ratio between the number of tips and the total number of nodes gives 0.52 when 

averaged over all the trees (for perfect binary trees, the ratio is 0.50). 

As a comprehensive database comparable to TreeBASE does not exist for intraspecific phylogenies, 

we constructed an intraspecific data set by manually compiling 67 intraspecific phylogenies from 

several published phylogenetic analysis [S1-S45]. We compiled this data set in such a way that it 

contains: 1) Organisms from the main different environments (terrestrial, marine and fresh water), 

climatic regions (from polar to desert), and branches of life (Table S1). 2) Phylogenetic trees 

reconstructed with the main phylogenetic tree estimation methods, i.e., neighbor-joining, maximum 

parsimony and maximum likelihood methods.  
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In order to test whether the results derived from the examination of the relatively small (67 

phylogenies) intraspecific data base can be compared with the much larger (5212) set of interspecific 

phylogenies extracted from TreeBASE, we sampled the literature to construct a dataset of 67 

interspecific phylogenies drawn from the literature [S46-S85] using the same criteria as those to 

derived the intraspecific phylogeny data base (Table S1), obtaining full agreement (Figure S1). The 

intra- and interspecific phylogenies derived from the literature ranged between 30 and 170 tips, and 

they contained mainly binary branching events. An example for each kind of phylogenies is shown in 

Figures S2a and S3a. 

Branch size and cumulative branch size distributions. 

We associate to each node i of a phylogenetic tree two quantities, the size Ai (number of nodes) of the 

subtree Si made up of node i and all the descendant nodes below it, that is, the subtree which does not 

contain the global root of the original tree, and the cumulative branch size, Ci, defined as the sum of 

the branch sizes associated to all the nodes in the subtree Si, C i=∑ A j . To characterize the 

probability distributions of the Ai and Ci values on a particular phylogenetic tree we compute the 

respective complementary cumulative distribution functions (CCDF): F(A)=probability(Ai>A), and 

F(C)=probability(Ci>C). We observe that these quantities scale, for large values of A and C, as 

power laws: AτF(A)~ A −1  and CτF(C)~ C −1 . The exponents τA and τC, thus, characterize the 

probabilities of {Ai} and {Ci}: AτP(A)~ A− and CτP(C)~ C − , respectively.  

Allometric scaling relationship. 

We observe that a functional relationship among the values of C and A, i.e. among shape and size, 

exists and also follows a power law, C ~ A η , characterized by an exponent η. Since this 

relationship encodes the variation of a system property as size is varied, we can call this an allometric 

scaling relationship, to stress its connections with other functional relationships relating function and 
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size [11, 13, 27]. We note that introduction of the change of variables C ~ A η  into CτF(C)~ C −1  

leads to )1( CτF(C)~ A −η , from which η=(1-τA)/(1-τC.). Thus, only two out of the three exponents are 

independent. As simple examples for which the above exponents can be computed by direct 

counting, we mention the pectinate or fully unbalanced tree, i.e. a tree in which all branching occurs 

successively along a single branch, characterized by the exponents τA = 0, τC = 1/2, η = 2, or the fully 

symmetric or Cayley tree, characterized by τA = 2, and C ∼ AlnA, which except for the weak 

logarithmic correction corresponds to η  = 1 and  τC = 2. Figures S2b and S3b show, in contrast, the 

allometric scaling relationship for the particular examples of intra- and inter-specific phylogenies 

displayed in Figures S2a and S3a.  

In order to investigate whether observations differ from random expectations, we have compared the 

allometric scaling found here with the prediction of a null model [29], the Equal-rates Markov 

(ERM) model. The ERM model was attributed to Harding [30], and to Cavalli-Sforza and Edwards 

[31], although it is based on models of the diversification process that date back at least to Yule [23]. 

The main assumption of the ERM model is that the phylogeny is the product of random branching. 

This is the result when the “effective speciation rate” (the difference between extinction and 

speciation rate) is equal for all species. The effective speciation rate may change chronologically, 

provided that it is the same for all lineages at a given time [23]. For this model we obtain C ∼ A ln A, 

or η = 1, and also τA = τC = 2. The random asymmetries introduced by the ERM are not strong enough 

to change the scaling behavior from the symmetric tree result.  

The quantity Ci/Ai can be thought as a measure of the average depth or distance of the phylogenetic 

tree leaves to the node i. This can be seen taking into account that ∑ += )1( iji dC , where dij 

corresponds to the distance of each of the nodes j of the subtree Si to the root i. Thus, the relationship 

between C and A can be written as iiii Ad+A=C , where 
i

d  is the average depth of the nodes in 
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the subtree Si. The relationship between Ci/Ai and the depth is obtained: 1/ +
iii d=AC . This 

quantity is closely related to the Sackin’s index defined as the distance of the leaves to the root: 

∑ ∈
=

leavesl rootldS ,  [32, 33]. It can be shown that for binary trees C=2S+1, where ∑∀i rooti,d=C . 

Since the scaling law relating the increase of the depth or Sackin’s index with three size is known to 

be the same as the scaling of the Colless' index, measuring the symmetry or balance of a phylogenetic 

tree [34], our results for η can be put in the context of the numerous studies available on the 

unbalance of phylogenetic trees [4, 17, 35]. Thus, connections between several methodologies 

previously used to analyze the topology of trees, such as size distributions [10, 23], unbalance and 

depth [4, 8, 32-35], and transport efficiency [7, 13, 27, 28], are revealed within the framework 

presented here. 
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Figure 1. Branch size and cumulative branch size examples. The values of the branch size (A) and 

of the cumulative branch size (C) are shown (in brackets, as (A,C)) at each node of three small 

example trees: (a) A completely balanced tree of 15 nodes, (b) a completely imbalanced tree of 15 

nodes, and (c) a subtree of 15 nodes of a real phylogenetic tree, the intraspecific Vibrio vulnificus 

phylogeny presented in full in Fig. S2a. Note that the value of C at the root is maximum for the fully 

imbalanced tree, and minimum for the balanced one. 

 

Figure 2. Average distributions. Cumulative complementary distribution functions (CCDFs) 

averaged and logarithmically binned over all phylogenetic trees in the interspecific (empty squares) 

and intraspecific (solid circles) data sets. (a) CCDF of branch size, F(A). Solid line corresponds to a 

power law AτF(A)~ A −1  with the exponent given by the best fit to the interspecific data set τA = 1.74. 

(b) CCDF of the cumulative branch size, F(C). The line corresponds to a power law with the 

exponent given by the best fit to the interspecific data set τC = 1.53.  

 

Figure 3. Allometric scaling. (a) Plot of the logarithmically binned set of values of branch size, A, 

and cumulative branch size, C, for the interspecific (empty squares) and intraspecific (solid circles) 

data sets considered. The line corresponds to a power law C ∼ Aη, with the exponent given by the best 

fit through all data, η = 1.44. The inset shows probability distributions of the values of η fitted to 

each individual tree (left: interspecific, right: intraspecific data sets) illustrating the small dispersion 

in the values. (b) Plot of the logarithmically binned set of values of C as a function of A for the 

interspecific data, normalized by the prediction from the ERM model (the horizontal line). Data 

systematically deviate from ERM, especially for large size A.  
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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Appendix 

Scaling of branch size and cumulative branch size: TreeBASE vs. manually selected data sets 

The interspecific data set analyzed in this report consists of 5212 phylogenetic trees downloaded 

from TreeBASE (http://www.treebase.org). Given that a database similar to TreeBASE 

does not exist for intraspecific phylogenies, we constructed our intraspecific data set by manually 

compiling 67 phylogenetic trees from several published references [S1-S45]. The difference in size 

between the two data sets calls for some additional checking on the appropriateness of a comparison 

between them. As a way to close the gap between the two datasets we compiled a third set of trees 

consisting of phylogenies of interspecific character, like the data in TreeBASE, but manually 

extracted from published references [S46-85] following the same criteria as the intraspecific set 

analyzed in the report, and with the same size, 67 trees. We remind (see main text) that our selection 

criteria insure that our tree datasets contained organisms from terrestrial, marine and fresh water 

environments, from all the main climatic regions, from all kingdoms (Table S1), and reconstructed 

with the main phylogenetic tree estimation methods. 

The results of this analysis are shown in Figure S1 (we illustrate tree structures and the allometric 

scaling for one intraspecific and one interspecific tree in Figures S2 and S3, respectively). It displays 

the cumulative complementary distribution functions (CCDFs) for branch size (F(A), panel a) and 

cumulative branch size (F(C), panel b), and the allometric scaling relation ( ηAC ~ , panel c) 

averaged and logarithmically binned over all phylogenetic trees. We see that, despite their different 

size, the two interspecific data sets display the same behavior. Any bias in the manual selection 

procedure with respect to TreeBASE, if present, is weak enough to have no impact on the topological 

scaling behavior. In addition, there is perfect agreement between the scaling of the three data sets, 

except for the largest tree sizes for which there is poor statistics in the smaller data sets. This gives 

further support to the universality of the scaling found. 
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 INTER INTRA 
Animalia 26 24 
Archaea 3 0 
Bacteria 9 18 
Fungi 13 6 
Plantae 8 6 
Protozoa 6 4 
Viruses 2 9 

 

Table S1. Break-down of the number of analyzed inter- and intra-species trees with respect to 

taxa. 
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Figure S1. Scaling relations from the enlarged data set described in the Appendix. Cumulative 

complementary distribution functions (CCDFs) for branch size (F(A), panel a) and cumulative branch 

size (F(C), panel b), and the allometric scaling relation ( ηAC ~ , panel c) averaged and 

logarithmically binned over all phylogenetic trees. Empty squares are for the interspecific TreeBASE 

data set, solid circles are for the manually compiled intraspecific data set, and triangles are for the 

new manually compiled interspecific data set of reduced size. Solid lines are power laws fitted to the 

TreeBASE behavior, as in Figs. 2 and 3 of the main text.  

 

Figure S2. Intraspecific phylogenetic tree. (a) An example of an intraspecific phylogenetic tree: 

different strains of the bacteria Vibrio vulnificus [S19]. Most of the branchings are binary, but there 

are some 3rd order branchings. (b) The allometric scaling plot showing the relationship of cumulative 

branch size (C) to branch size (A) from each node of that tree. The solid line corresponds to the 

fitting C~A1.43 to this intraspecific dataset. 

 

Figure S3. Interspecific phylogenetic tree. (a) An example of an interspecific phylogenetic tree: the 

catfish species (order Siluriformes) [S80]. Most of the branchings are binary, but there are some 3rd 

order branchings. (b) The allometric scaling plot showing the relationship of cumulative branch size 

(C) to branch size (A) from each node of that tree. The solid line corresponds to the fitting C~A1.44 to 

this intraspecific dataset. 
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